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Abstract

This is the sequel to the _rst part of this paper "Dvorak et al[\ 0888\ Int[ J[ Solids Structures 25\ 2806Ð
2832#\ concerned with modeling and analysis of laminated composite cylinder fabrication procedures\ such
as _lament winding or _ber placement\ which involve _ber pre!stress for waviness reduction as well as overall
or local heating to and cooling from matrix curing temperatures[ The _ber pre!stress applied in individual
plies is shown to cause a self!stress in the respective plies\ and relaxation stresses in the already completed
plies and in the supporting mandrel[ The _nal residual stress state is reached after mandrel removal[ In~uence
functions that relate the ply stresses to the applied pre!stress forces are derived[ Direct problems are solved
for ply stresses caused by prescribed constant or linearly or parabolically changing pre!stress magnitudes in
the layers[ A superposition of the constant and parabolic distributions is shown to lead to nearly uniform
stresses through the cylinder wall[ The magnitudes depend on the radial sti}ness of the mandrel that supports
the structure during fabrication[ Inverse problems are formulated as nonlinear optimizations and solved by
quadratic programming[ The goal is to determine _ber pre!stress distributions through the wall thickness
such that the total stresses due to external hydrostatic pressure and _ber pre!stress are as uniform as possible
through the wall thickness and con_ned by the ply strength magnitudes[ Þ 0888 Elsevier Science Ltd[ All
rights reserved[

0[ Introduction

It is well known that relatively thick unidirectional _ber composites that are carefully manu!
factured for reduced _ber waviness and low matrix porosity can support axial compressive stresses
of signi_cant magnitudes "Daniel and Isahi\ 0883#[ In large structures that are produced by _ber
placement or _lament winding\ _ber waviness can be reduced by _ber pre!stress applied prior to
curing[ Relatively small forces are needed\ for example a 002 lb force is shown to cause a 0999
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MPa pre!stress in a typical 09\999 _lament tow[ However\ apart from the potentially bene_cial
e}ect on ply compressive strength\ the consequences of _ber pre!stress applied in a large laminated
structure are not well understood[

This paper examines the residual stresses caused by _ber pre!stress applied in individual plies
during fabrication of a laminated cylindrical structure[ Using the theoretical framework developed
in Part I "Dvorak et al[\ 0888# we establish in Section 1 a set of in~uence functions that evaluate
the ply residual stresses in terms of the pre!stress forces applied to the individual layers of the
laminate[ We also examine the e}ect of cooling from the curing temperature on the residual stress
state and show that very di}erent residual states can be caused by either overall heating and
cooling of the entire cylinder\ or by local heating applied in _ber placement procedures[ Then\ in
Section 2\ ply residual stresses are found for certain prescribed distribution of _ber pre!stress
magnitudes through the cylinder wall thickness[ In particular\ constant pre!stress applied uniformly
to all plies is shown to produce possibly high stress gradients\ with compressive stresses at the
inner surface that may impair the load bearing capacity of the structure[ More favorable\ nearly
uniform residual stresses are found in the cylinder wall with variable pre!stress distributions[
Finally\ Section 3 presents a nonlinear optimization procedure for solving the inverse problem of
_nding _ber pre!stress distribution that generates minimized residual stresses that do not exceed
certain prescribed magnitudes[ In superposition with the stresses due to the applied hydrostatic
pressure\ the residuals produce total stresses that lie within given ply strength limits[ The desirable
pre!stress distribution is found to depend\ in part\ on the sti}ness of the mandrel that supports the
composite structure during fabrication[

1[ Model of the fabrication process

The fabrication procedure model adopted here applies to a cylindrical laminated structure laid
up in successive layers on an elastic mandrel of certain radial and axial sti}ness[ Fiber placement
with in situ curing\ or lay!up and curing of either new layers on already cured layers\ or of all
layers at once\ can be represented by the model[ As in Part I\ Section 1\ each layer is assumed to
be a cylindrically orthotropic elastic solid with known elastic moduli representing a single ply of
certain orientation\ or the mandrel[ In the analysis\ the mandrel is denoted as layer i � 0\ and the
laminate layers as i � 1\ 2\ [ [ [ \ N[

During curing\ the _bers in the composite layers are pre!stressed at the curing temperature by a
certain force Pi[ This force can be resolved into its components in the cylinder hoop and axial
directions as Pu

i and Pz
i \ respectively[ The Pu

i :P
z
i ratio depends on the angle that the helix trajectory

of the _ber contains with the cylinder axis[ After all the layers have been laid\ the mandrel is
removed\ leaving a "N−0# layered cylindrical laminate[

During the fabrication process\ initial strains are introduced by the pre!stress forces and by
cooling of the layers from the curing temperature\ hence residual stresses are generated in the
structure as it is built up on the mandrel[ At completion of the fabrication process\ the mandrel
itself supports certain radial traction force R and a total axial force Z[ After mandrel removal\ the
residual stress state is changed by superposition with stresses caused by internal radial force −R
and axial force −Z[

In what follows\ the respective contributions to the _nal residual stress state will be evaluated
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in terms of stress averages in the layers[ The self!stress caused by _ber pre!stress will be denoted
by ðsŁa\ the relaxation stress in the existing layers due to tractions imposed by pre!stressing the
current layer by ðsŁb\ the superposition of these stresses that describes the stress state in the
completed structure prior to mandrel removal by ðsŁg\ and the stresses induced by mandrel removal
by ðsŁd[ The superposition of the last two states provides the _nal residual stress distribution in
the structure[

1[0[ Self!stress

As in Part I\ Section 1\ consider a cylindrical layer "i# of inner radius ai\ outer radius bi and
thickness ti � bi−ai[ Let ci denote the angle that all _bers in the layer "i# contain with the
longitudinal z!axis of the cylinder[ The self!stress ðsiŁa in layer "i# is caused by application of a
certain pre!stress force Pi to each _ber in its winding direction ci\ both before and during curing^
therefore\ this stress is preserved after curing as part of the total _ber stress[ The _ber pre!stress
force components in the hoop and axial directions are\

Pu
i � Pi sin c Pz

i � Pi cos c "0#

The axial and hoop components of the self!stress in the cylinder coordinate system of Fig[ 0 of
Part I "Dvorak et al[\ 0888# can be found as follows[ Consider a small square element of the ith
layer in the uz!plane\ where the u!axis is in the hoop direction and z!axis in the longitudinal
direction of the composite cylinder[ For simplicity\ let the reinforcement be represented by a
monolayer of _bers of diameter di

f and spacing si\ evaluated in terms of _ber volume fraction ci
f as\

si �
p"di

f#1

3tic
i
f

"1#

This represents the average distance between the _ber axes measured in the direction perpendicular
to the _bers in each ply[ However\ in the planes perpendicular to the u! and z!axes of the cylinder\
the average distances between the _ber axes will be\

si
z �

si

sin ci

on planes u � const[ "2#

si
u �

si

cos ci

on planes z � const[ "3#

Since the force Pi are applied to the individual _bers\ the hoop and axial components of the self!
stress ðsiŁa are related to the force components "0# as\

ðsi
uuŁa �

Pu
i

si
zti

"4#

ðsi
zzŁa �

Pz
i

si
uti

"5#
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Substituting for "0#Ð"3# eliminates the auxiliary parameters si and ti and provides the self!stress
components in the form]

ðsi
uuŁa �

3ci
fPi sin1 ci

p"di
f#1

ðsi
zzŁa �

3ci
fPi cos1 ci

p"di
f#1

"6#

where the expression 3Pi:"p"di
f#1# represents the magnitude of the actual pre!stress applied to the

_bers[ Note that ðsi
uuŁa � 9 for 9> plies\ ðsi

zzŁa � 9 for 89> plies and ðsi
uuŁa � 2ðsi

zzŁa for 59> plies[
Let the hoop and axial stress averages in each layer be expressed as

sa
uu � ððs1

uuŁa\ ðs2
uuŁa\ ðs3

uuŁa\ [ [ [ \ ðsN
uuŁaŁT "7#

sa
zz � ððs1

zzŁa\ ðs2
zzŁa\ ðs3

zzŁa\ [ [ [ \ ðsN
zzŁaŁT "8#

Substituting for the stress components in "7# and "8# from "6# and "7#

sa
uu � Sa

uuPu¦Sa
uzPz sa

zz � Sa
zuPu¦Sa

zzPz "09#

where

Pu � ðPu
1\ Pu

2\ Pu
3\ [ [ [ \ Pu

NŁT Pz � ðPz
1\ Pz

2\ Pz
3\ [ [ [ \ Pz

NŁT "00#

are the ð"N−0#×0Ł pre!stressing force vectors in the u and z directions\ respectively[ The Sa
uu\ Sa

uz\
Sa

zu and Sa
zz are ð"N−0#×"N−0#Ł matrices that represent the self!stress in~uence functions\

Sa
uu �

K

H

H

H

H

H

H

H

H

H

H

H

H

k

3c1
f sin c1

p"d1
f #1

9 9 [ [ [ 9

9
3c2

f sin c2

p"d2
f #1

9 [ [ [ 9

9 9
3c3

f sin c3

p"d3
f #1

[ [ [ 9

* * * = = [ *

9 9 9 [ [ [
3cN

f sin cN

p"dN
f #1

L

G

G

G

G

G

G

G

G

G

G

G

G

l

"01#

Sa
zz �

K

H

H

H

H

H

H

H

H

H

H

H

H

k

3c1
f cos c1

p"d1
f #1

9 9 [ [ [ 9

9
3c2

f cos c2

p"d2
f #1

9 [ [ [ 9

9 9
3c3

f cos c3

p"d3
f #1

[ [ [ 9

* * * = = [ *

9 9 9 [ [ [
3cN

f cos cN

p"dN
f #1

L

G

G

G

G

G

G

G

G

G

G

G

G

l

"02#
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Sa
uz � Sa

zu � 9 "03#

1[0[0[ Thermal stress as part of self!stress
Thermal stresses are created in the structure\ for example\ by cooling from the curing tempera!

ture[ In the case of a large structure fabricated by in situ _ber placement involving only local
temperature changes\ the thermal stresses can be evaluated and included as part of the self!stress[
Consider a process where a new layer " j# is laid on already cured " j−0# layered cylinder[ If a _ber
tow being laid is free to contract during cooling\ the thermal strain would be

Dof
jA � af

jADT "04#

where af
jA is the axial thermal expansion coe.cient of the _ber and DT the temperature change[

However\ the free contraction is restrained by the " j−0# layered cylinder[ Assuming that the
already cured cylinder is rigid enough to completely restrain the radial and axial contraction the
pre!stressing force due to the temperature change is\

DPj
t �

p"dj
f#1

3
Ef

jADof
jA "05#

where Ef
jA is the axial Young|s modulus of the _ber[ In the _ber placement process\ this force is

added to the pre!stressing force vectors "00#[
If _lament winding or wet lay!up are used together with curing of some or all layers\ the partially

or entirely completed structure undergoes thermal cycling that creates a uniform thermal change
in the fabricated layers[ As shown in the _rst part "Dvorak et al[\ 0888\ Section 6#\ the thermal
stresses are not very high\ hence cyclic elastic response is anticipated[ Therefore\ while the residual
stress state changes with the addition of each layer\ the _nal state is that in the completed cylinder
that has been subjected to uniform cooling from a stress!free state at the curing temperature[ It is
probably obvious that entirely di}erent residual stress _elds are caused in a given structure by the
di}erent fabrication procedures[

1[1[ Relaxation stresses

These stresses are caused in the already cured layers i � 1\ 2\ [ [ [ \" j−0# by applying the pre!
stressing forces Pj "Fig[ 0# in the layer j[ The hoop component of the pre!stressing force Pu

j applied
a radial traction r>jaj\ where the radial pressure r>j can be derived from the equilibrium in the layer
" j# as

r>j �
ðsj

uuŁatj

aj

�
3cj

fðPu
j Ł> sin cjtj

p"dj
f#1aj

"06#

Similarly\ the axial component Pz
j generates an axial traction z>jp"b1

j −a1
j #[ The axial stress z>j in the

new layer " j# is equivalent to the axial self stress ðsj
zzŁa\ therefore\

z>j � ðsj
zzŁa �

3cj
fðPz

jŁ> cos cj

p"dj
f#1

"07#

Internal stresses due to unit radial pressure r>j � 0 and unit axial stress z>j � 0 are _rst obtained
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Fig[ 0[ Stress state during fabrication and _ber pre!stress sequence[

from the solution procedure described by Dvorak et al[ "0888#[ These unit stress solutions are then
used to write the hoop and axial stresses in each layer caused by the actual _ber pre!stress forces
Pu

j and Pz
j [

Note that the radial traction and axial force both generate radial\ hoop and axial stresses in the
layers[ The stresses caused by unit radial traction r>j are denoted as ðsr

rrŁ>0\j\ ðsr
rrŁ>1\j\

ðsr
rrŁ>2\j\ [ [ [ \ ðsr

rrŁ>" j−0#\j^ ðsr
uuŁ>0\j\ ðsr

uuŁ>1\j\ ðsr
uuŁ>2\j\ [ [ [ \ ðsr

uuŁ>" j−0#\j^ ðsr
zzŁ>0\j\ ðsr

zzŁ>1\j\
ðsr

zzŁ>2\j\ [ [ [ \ ðsr
zzŁ>" j−0#\j[

The stresses caused by the unit axial stress z>j are denoted as\ ðsz
rrŁ>0\j\ ðsz

rrŁ>1\j\
ðsz

rrŁ>2\j\ [ [ [ \ ðsz
rrŁ>" j−0#\j^ ðsz

uuŁ>0\j\ ðsz
uuŁ>1\j\ ðsz

uuŁ>2\j\ [ [ [ \ ðsz
uuŁ>" j−0#\j^ ðsz

zzŁ>0\j\ ðsz
zzŁ>1\j\

ðsz
zzŁ>2\j\ [ [ [ \ ðsz

zzŁ>" j−0#\j[
The relaxation stresses "denoted by the superscript b# caused in the layers of the completed

structure by the actual pre!stressing forces Pu
j and Pz

j are obtained by superposition of the
contributions from pre!stressing of each layer j � 1\ 2\\ [ [ [ \ N

ðsi
rrŁb � s

N

j�i¦0 6$
ðsr

rrŁ>i\ j
ðPu

j Ł>%Pu
j ¦$

ðsz
rrŁ>i\ j

ðPz
jŁ>%Pz

j7 "08#

ðsi
uuŁb � s

N

j�i¦0 6$
ðsr

uuŁ>i\ j
ðPu

j Ł> %Pu
j ¦$

ðsz
uuŁ>i\ j

ðPz
jŁ> %Pz

j7 "19#

ðsi
zzŁb � s

N

j�i¦0 6$
ðsr

zzŁ>i\ j
ðPu

j Ł> %Pu
j ¦$

ðsz
zzŁ>i\ j

ðPz
jŁ> %Pz

j7 "10#

Expressing the hoop and axial relaxation stresses in the vector form

sb
uu � ððs1

uuŁb\ ðs2
uuŁb\ ðs3

uuŁb\ [ [ [ \ ðsN
uuŁbŁT "11#
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sb
zz � ððs1

zzŁb\ ðs2
zzŁb\ ðs3

zzŁb\ [ [ [ \ ðsN
zzŁbŁT "12#

and substituting for the stress components ðsi
pqŁb from "08#Ð"10# will yield\

sb
uu � Sb

uuPu¦Sb
uzPz sb

zz � Sb
zuPu¦Sb

zzPz "13#

where Sb
uu\ Sb

uz\ Sb
zu and Sb

zz are the relaxation stress in~uence functions of dimension
ð"N−0#×"N−0#Ł given by\

Sb
uu �

K

H

H

H

H

H

H

H

H

H

H

k

9
ðsr

uuŁ>1\2

ðPu
2Ł>

ðsr
uuŁ>1\3

ðPu
3Ł>

[ [ [
ðsr

uuŁ>1\N−0

ðPu
N−0Ł>

ðsr
uuŁ>1\N

ðPu
NŁ>

9 9
ðsr

uuŁ>2\3

ðPu
3Ł>

[ [ [
ðsr

uuŁ>2\N−0

ðPu
N−0Ł>

ðsr
uuŁ>2\N

ðPu
NŁ>

* * * = = [ * *

9 9 9 [ [ [ 9
ðsr

uuŁ>N−0\N

ðPu
NŁ>

9 9 9 [ [ [ 9 9

L

G

G

G

G

G

G

G

G

G

G

l

"14#

Sb
uz �

K

H

H

H

H

H

H

H

H

H

H

k

9
ðsz

uuŁ>1\2

ðPz
2Ł>

ðsz
uuŁ>1\3

ðPz
3Ł>

[ [ [
ðsz

uuŁ>1\N−0

ðPz
N−0Ł>

ðsz
uuŁ>1\N

ðPz
NŁ>

9 9
ðsz

uuŁ>2\3

ðPz
3Ł>

[ [ [
ðsz

uuŁ>2\N−0

ðPz
N−0Ł>

ðsz
uuŁ>2\N

ðPz
NŁ>

* * * = = [ * *

9 9 9 [ [ [ 9
ðsz

uuŁ>N−0\N

ðPz
NŁ>

9 9 9 [ [ [ 9 9

L

G

G

G

G

G

G

G

G

G

G

l

"15#

Sb
zu �

K

H

H

H

H

H

H

H

H

H

H

k

9
ðsr

zzŁ>1\2

ðPu
2Ł>

ðsr
zzŁ>1\3

ðPu
3Ł>

[ [ [
ðsr

zzŁ>1\N−0

ðPu
N−0Ł>

ðsr
zzŁ>1\N

ðPu
NŁ>

9 9
ðsr

zzŁ>2\3

ðPu
3Ł>

[ [ [
ðsr

zzŁ>2\N−0

ðPu
N−0Ł>

ðsr
zzŁ>2\N

ðPu
NŁ>

* * * = = [ * *

9 9 9 [ [ [ 9
ðsr

zzŁ>N−0\N

ðPu
NŁ>

9 9 9 [ [ [ 9 9

L

G

G

G

G

G

G

G

G

G

G

l

"16#
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Sb
zz �

K

H

H

H

H

H

H

H

H

H

H

k

9
ðsz

zzŁ>1\2

ðPz
2Ł>

ðsz
zzŁ>1\3

ðPz
3Ł>

[ [ [
ðsz

zzŁ>1\N−0

ðPz
N−0Ł>

ðsz
zzŁ>1\N

ðPz
NŁ>

9 9
ðsz

zzŁ>2\3

ðPz
3Ł>

[ [ [
ðsz

zzŁ>2\N−0

ðPz
N−0Ł>

ðsz
zzŁ>2\N

ðPz
NŁ>

* * * = = [ * *

9 9 9 [ [ [ 9
ðsz

zzŁ>N−0\N

ðPz
NŁ>

9 9 9 [ [ [ 9 9

L

G

G

G

G

G

G

G

G

G

G

l

"17#

While the completed composite cylinder remains supported by the mandrel\ the average stresses
in the mandrel and layers follow by adding the above self!stress and relaxation stresses\

sg
uu � Sg

uuPu¦Sg
uzPz sg

zz � Sg
zuPu¦Sg

zzPz "18#

where

sg
uu � sa

uu¦sb
uu sg

zz � sa
zz¦sb

zz "29#

and

Sg
uu � Sa

uu¦Sb
uu Sg

uz � Sa
uz¦Sb

uz "20#

Sg
zu � Sa

zu¦Sb
zu Sg

zz � Sa
zz¦Sb

zz "21#

1[2[ Mandrel reaction stresses

The radial and axial reactions exerted by the mandrel on the completed structure can now be
evaluated from "08# and "10# as

R � s
N

j�1 6$
ðsr

rrŁ>0\j

ðPu
j Ł> %Pu

j ¦$
ðsz

rrŁ>0\j

ðPz
jŁ> %Pz

j7 "22#

Z � s
N

j�1 6$
ðsr

zzŁ>0\j

ðPu
j Ł> %Pu

j ¦$
ðsz

zzŁ>0\j

ðPz
jŁ> %Pz

j7 "23#

The e}ect of the mandrel removal is equivalent to application of the radial traction −R at the
inner surface r � a1 and −Z\ at both ends of the no longer mandrel supported cylindrical structure[
The corresponding components of average stresses in the layers are\

ðsi
uuŁR � −Rðsr

uuŁ>i ðsi
uuŁZ � −Zðsa

uuŁ>i "24#

ðsi
zzŁR � −Rðsr

zzŁ>i ðsi
zzŁZ � −Zðsa

zzŁ>i "25#

where the ðsr
uuŁ>i and ðsr

zzŁ>i are layer average stresses due to unit radial pressure −Pa:"a1L# � 0
applied at r � a1 and ðsa

uuŁ>i and ðsa
zzŁ>i are the layer average stresses caused by a unit axial stress

Pz:ðp"b1
0−a1

0#Ł � 0\ respectively^ both are dimensionless[
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Using the matrix form\ eqns "24# and "25# are written as

sR
uu � SR

uuPu¦SR
uzPz sZ

uu � SZ
uuPu¦SZ

uzPz "26#

sR
zz � SR

zuPu¦SR
zzPz sZ

zz � SZ
zuPu¦SZ

zzPz "27#

where the ð"N−0#×0Ł stress vectors are

sR
uu � ððs1

uuŁR\ ðs2
uuŁR\ ðs3

uuŁR\ [ [ [ \ ðsN
uuŁRŁ "28#

sZ
uu � ððs1

uuŁZ\ ðs2
uuŁZ\ ðs3

uuŁZ\ [ [ [ \ ðsN
uuŁZŁ "39#

sR
zz � ððs1

zzŁR\ ðs2
zzŁR\ ðs3

zzŁR\ [ [ [ \ ðsN
zzŁRŁ "30#

sZ
zz � ððs1

zzŁZ\ ðs2
zzŁZ\ ðs3

zzŁR\ [ [ [ \ ðsN
zzŁZŁ "31#

The ð"N−0#×"N−0#Ł stress in~uence functions in "26# and "27# are

SR
uu �

K

H

H

H

H

H

H

H

H

k

−
ðsr

rrŁ>0\1ðsr
uuŁ>1

ðPu
1Ł>

−
ðsr

rrŁ>0\2ðsr
uuŁ>1

ðPu
2Ł>

[ [ [ −
ðsr

rrŁ>0\Nðsr
uuŁ>1

ðPu
NŁ>

−
ðsr

rrŁ>0\1ðsr
uuŁ>2

ðPu
1Ł>

−
ðsr

rrŁ>0\2ðsr
uuŁ>2

ðPu
2Ł>

[ [ [ −
ðsr

rrŁ>0\Nðsr
uuŁ>2

ðPu
NŁ>

* * = = [ *

−
ðsr

rrŁ>0\1ðsr
uuŁ>N

ðPu
1Ł>

−
ðsr

rrŁ>0\2ðsr
uuŁ>N

ðPu
2Ł>

[ [ [ −
ðsr

rrŁ>0\Nðsr
uuŁ>N

ðPu
NŁ>

L

G

G

G

G

G

G

G

G

l

"32#

SZ
uu �

K

H

H

H

H

H

H

H

H

k

−
ðsr

zzŁ>0\1ðsa
uuŁ>1

ðPu
1Ł>

−
ðsr

zzŁ>0\2ðsa
uuŁ>1

ðPu
2Ł>

[ [ [ −
ðsr

zzŁ>0\Nðsa
uuŁ>1

ðPu
NŁ>

−
ðsr

zzŁ>0\1ðsa
uuŁ>2

ðPu
1Ł>

−
ðsr

zzŁ>0\2ðsa
uuŁ>2

ðPu
2Ł>

[ [ [ −
ðsr

zzŁ>0\Nðsa
uuŁ>2

ðPu
NŁ>

* * = = [ *

−
ðsr

zzŁ>0\1ðsa
uuŁ>N

ðPu
1Ł>

−
ðsr

zzŁ>0\2ðsa
uuŁ>N

ðPu
2Ł>

[ [ [ −
ðsr

zzŁ>0\Nðsa
uuŁ>N

ðPu
NŁ>

L

G

G

G

G

G

G

G

G

l
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SR
uz �

K

H

H

H

H

H

H

H

H

k

−
ðsz

rrŁ>0\1ðsr
uuŁ>1

ðPz
1Ł>

−
ðsz

rrŁ>0\2ðsr
uuŁ>1

ðPz
2Ł>

[ [ [ −
ðsz

rrŁ>0\Nðsr
uuŁ>1

ðPz
NŁ>

−
ðsz

rrŁ>0\1ðsr
uuŁ>2

ðPz
1Ł>

−
ðsz

rrŁ>0\2ðsr
uuŁ>2

ðPz
2Ł>

[ [ [ −
ðsz

rrŁ>0\Nðsr
uuŁ>2

ðPz
NŁ>

* * = = [ *

−
ðsz

rrŁ>0\1ðsr
uuŁ>N

ðPz
1Ł>

−
ðsz

rrŁ>0\2ðsr
uuŁ>N

ðPz
2Ł>

[ [ [ −
ðsz

rrŁ>0\Nðsr
uuŁ>N

ðPz
NŁ>

L

G

G

G

G

G

G

G

G

l
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SZ
uz �

K

H

H

H

H

H

H

H

H

k

−
ðsz

zzŁ>0\1ðsa
uuŁ>1

ðPz
1Ł>

−
ðsz

zzŁ>0\2ðsa
uuŁ>1

ðPz
2Ł>

[ [ [ −
ðsz

zzŁ>0\Nðsa
uuŁ>1

ðPz
NŁ>

−
ðsz

zzŁ>0\1ðsa
uuŁ>2

ðPz
1Ł>

−
ðsz

zzŁ>0\2ðsa
uuŁ>2

ðPz
2Ł>

[ [ [ −
ðsz

zzŁ>0\Nðsa
uuŁ>2

ðPz
NŁ>

* * = = [ *

−
ðsz

zzŁ>0\1ðsa
uuŁ>N

ðPz
1Ł>

−
ðsz

zzŁ>0\2ðsa
uuŁ>N

ðPz
2Ł>

[ [ [ −
ðsz

zzŁ>0\Nðsa
uuŁ>N

ðPz
NŁ>

L

G

G

G

G

G

G

G

G

l
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SR
zu �

K

H

H

H

H

H

H

H

H

k
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ðsr

rrŁ>0\1ðsr
zzŁ>1

ðPu
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−
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zzŁ>1
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2Ł>

[ [ [ −
ðsr

rrŁ>0\Nðsr
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NŁ>
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−
ðsr

rrŁ>0\2ðsr
zzŁ>2
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[ [ [ −
ðsr

rrŁ>0\Nðsr
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NŁ>
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−
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zzŁ>N
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1Ł>

−
ðsr

rrŁ>0\2ðsr
zzŁ>N
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2Ł>
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ðsr

rrŁ>0\Nðsr
zzŁ>N

ðPu
NŁ>

L

G

G
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G

G
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"49#

The total average stresses in the layers caused by application of tractions −R and −Z in "24#
and "25# are then equal to

sd
uu � Sd

uuPu¦Sd
uzPz sd

zz � Sd
zuPu¦Sd

zzPz "40#

where

Sd
uu � SR

uu¦SZ
uu Sd

uz � SR
uz¦SZ

uz "41#

Sd
zu � SR

zu¦SZ
zu Sd

zz � SR
zz¦SZ

zz "42#

1[3[ Total residual stresses

A superposition of the layer stress averages due to self!stress\ relaxation stress and reaction
stresses provides the total residual stress state in all layers of the composite structure[ Thus\ adding
equations "09#0\ "13#0 and "40#0 yields the overall residual hoop stress while equation "09#1\ "13#1

and "40#1 give the overall residual axial stress[ These stresses can then be written as\

suu � SuuPu¦SuzPz szz � SzuPu¦SzzPz "43#

where again\ the in~uence functions have the dimensions ð"N−0#×"N−0#Ł and are given by

Suu � Sa
uu¦Sb

uu¦Sd
uu Suz � Sa

uz¦Sb
uz¦Sd

uz "44#

Szu � Sa
zu¦Sb

zu¦Sd
zu Szz � Sa

zz¦Sb
zz¦Sd

zz "45#

1[4[ Equilibrium constraints

Here we introduce force equilibrium equations that impose certain constraints on the two
residual _elds "18# and "43# and on the reaction stresses "40#[ First\ consider the stress state in the
completed structure still supported by the mandrel[ In the absence of any external loads\ Fig[ 1\
the force equilibrium in the hoop and axial directions\ for the stresses "18#\ becomes

Lð"b0−a0#ðs0
uuŁg¦"b1−a1#ðs1

uuŁg¦"b2−a2#ðs2
uuŁg¦= = =¦"bN−aN#ðsN

uuŁgŁ � 9 "46#

pð"b1
0−a1

0#ðs0
zzŁg¦"b1

1−a1
1#ðs1

zzŁg¦"b1
2−a1

2#ðs2
zzŁg¦= = =¦"b1

N−a1
N#ðsN

zzŁgŁ � 9 "47#

The stress components ðsi
uuŁg and ðsi

zzŁg can be expressed in the matrix form

ðsi
uuŁg � ðS"i−0#

uu ŁgPu¦ðS"i−0#
uz ŁgPz i � 1\ 2\ 3\ [ [ [ \ N "48#
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Fig[ 1[ Equilibrium stress state in the mandrel!supported cylinder[

ðszzŁg
i � ðS"i−0#

zu ŁgPu¦ðS"i−0#
zz ŁgPz i � 1\ 2\ 3\ [ [ [ \ N "59#

where ðSj
uuŁg\ ðSj

uzŁg\ ðSj
zuŁg and ðSj

zzŁg are the ð0×"N−0#Ł row vectors formed out of the jth row of
the in~uence functions Sg

uu\ Sg
uz\ Sg

zu and Sg
zz in "20# and "21#\ respectively[

Substituting the stress relations "48# and "59# in the force equilibrium conditions "46# and "47#
gives\

"b0−a0#ðs0
uuŁg¦ s

N

i�1

"bi−ai#"ðS"i−0#
uu ŁgPu¦ðS"i−0#

uz ŁgPz# � 9 "50#

"b1
0−a1

0#ðs0
zzŁg¦ s

N

i�1

"b1
i −a1

i #"ðS"i−0#
zu ŁgPu¦ðS"i−0#

zz ŁgPz# � 9 "51#

Next\ consider the stress state "40# caused in the completed and unsupported structure\ assumed
now to be free of residual stress\ by the traction −R applied at the inner surface r � a1 as shown
in Fig[ 2[ Force equilibrium in the hoop and axial directions provides]

Lð"b1−a1#ðs1
uuŁR¦"b2−a2#ðs2

uuŁR¦"b3−a3#ðs3
uuŁR¦= = =¦"bN−aN#ðsN

uuŁRŁ � Ra1L "52#

pð"b1
1−a1

1#ðs1
zzŁR¦"b1

2−a1
2#ðs2

zzŁR¦"b1
3−a1

3#ðs3
zzŁR¦= = =¦"b1

N−a1
N#ðsN

zzŁRŁ � 9 "53#

Substituting for the stress components in the above equations from "26#0 and "27#0\

−Ra1¦ s
N

i�1

"bi−ai#"ðS"i−0#
uu ŁRPu¦ðS"i−0#

uz ŁRPz# � 9 "54#
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Fig[ 2[ Equilibrium stress state in the cylinder after mandrel removal[

s
N

i�1

"b1
i −a1

i #"ðS"i−0#
zu ŁRPu¦ðS"i−0#

zz ŁRPz# � 9 "55#

where ðSj
uuŁR\ ðSj

uzŁR\ ðSj
zuŁR and ðSj

zzŁR are ð0×"N−0#Ł row vectors formed out of the jth row of the
in~uence functions SR

uu\ SR
uz\ SR

zu and SR
zz\ respectively[

Similarly\ if the axial forces −Z are applied to both ends of the stress!free and unsupported
composite structure\ the force equilibrium for the _elds "26#1 and "27#1 can be written as\

s
N

i�1

"bi−ai#"ðS"i−0#
uu ŁZPu¦ðS"i−0#

uz ŁZPz# � 9 "56#

−Z"b1
0−a1

0#¦ s
N

i�1

"b1
i −a1

i #"ðS"i−0#
zu ŁZPu¦ðS"i−0#

zz ŁZPz# � 9 "57#

where ðSj
uuŁZ\ ðSj

uzŁZ\ ðSj
zuŁZ and ðSj

zzŁZ are ð0×"N−0#Ł row vectors formed out of the jth row of the
in~uence functions SZ

uu\ SZ
uz\ SZ

zu and SZ
zz\ respectively[

Now\ adding the hoop stress relations "50#\ "54# and "56# and the axial stress relations "51#\ "55#
and "57# gives\

−a1R¦"b0−a0#ðs0
uuŁg¦ s

N

i�1

"bi−ai#""ðS"i−0#
uu Łg¦ðS"i−0#

uu ŁR¦ðS"i−0#
uu ŁZ#Pu

¦"ðS"i−0#
uz Łg¦ðS"i−0#

uz ŁR¦ðS"i−0#
uz ŁZ#Pz# � 9 "58#
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−"b1
0−a1

0#Z¦"b1
0−a1

0#ðs0
zzŁg¦ s

N

i�1

"b1
i −a1

i #""ðS"i−0#
zu Łg¦ðS"i−0#

zu ŁR¦ðS"i−0#
zu ŁZ#Pu

¦"ðS"i−0#
zz Łg¦ðS"i−0#

zz ŁR¦ðS"i−0#
zz ŁZ#Pz# � 9 "69#

Making use of "18#Ð"21#\ "26#Ð"27# and "40#Ð"45#\ eqns "58# and "69# can be simpli_ed as\

−Ra1¦"b0−a0#ðs0
uuŁg¦ s

N

i�1

"bi−ai#"S"i−0#
uu Pu¦S"i−0#

uz Pz# � 9 "60#

−"b1
0−a1

0#Z¦"b1
0−a1

0#ðs0
zzŁg¦ s

N

i�1

"b1
i −a1

i #"S"i−0#
zu Pu¦S"i−0#

zz Pz# � 9 "61#

where Sj
uu\ Sj

uz\ Sj
zu and Sj

zz are ð0×"N−0#Ł row vectors formed out of the jth row of the in~uence
functions Suu\ Suz\ Szu and Szz\ respectively[

Following eqns "19# and "10#\ the stresses ðs0
uuŁg and ðs0

zzŁg in the above equations can be
expanded as\

ðs0
uuŁg � s

N

j�1 6$
ðsr

uuŁ>0\j

ðPu
j Ł> %Pu

j ¦$
ðsz

uuŁ>0\j

ðPu
j Ł> %Pz

j7 "62#

ðs0
zzŁg � s

N

j�1 6$
ðsr

zzŁ>0\j

ðPu
j Ł> %Pu

j ¦$
ðsz

zzŁ>0\j

ðPu
j Ł> %Pz

j7 "63#

The hoop stresses ðsr
uuŁ>0\j and ðsz

uuŁ>0\j in "62# are further replaced by their corresponding radial
stresses[ Referring back to the construction stage "06# and "07#\ where the jth layer is being laid on
already cured " j−0# layers\ a free body diagram of the mandrel along with the forces acting on it
due to a unit load r>j � 0 in the jth layer is considered\ as shown in Fig[ 3[ The equilibrium of
forces in the mandrel layer requires

ðsr
uuŁ0\j �

a1

"b0−a0#
ðsr

rrŁ0\j "64#

Similarly\ the equilibrium in the mandrel due to a unit pre!stressing force z>j � 0 in the jth layer
gives

ðsz
uuŁ0\j �

a1

"b0−a0#
ðsz

rrŁ0\j "65#

Substituting "64# and "65# in "62# yields]

ðs0
uuŁg �

a1

"b0−a0# $ s
N

j�1 6$
ðsr

rrŁ>0\j

ðPu
j Ł> %Pu

j ¦$
ðsz

rrŁ>0\j

ðPz
jŁ> %Pz

j7% "66#

Comparing eqns "66# and "22#\ one can conclude that

−a1R¦"b0−a0#ðs0
uuŁg � 9 "67#

Also\ from eqns "63# and "23#\
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Fig[ 3[ Stress state in the mandrel[

−"b1
0−a1

0#Z¦"b1
0−a1

0#ðs0
zzŁg � 9 "68#

The relations "67# and "68# further simplify the eqns "60# and "61# as\

s
N

i�1

"bi−ai#"S"i−0#
uu Pu¦S"i−0#

uz Pz# � 9 "79#

s
N

i�1

"b1
i −a1

i #"S"i−0#
zu Pu¦S"i−0#

zz Pz# � 9 "70#

It is however\ necessary in fabrication to apply the pre!stressing force Pi in the direction of
winding[ Thus\ if the layer has a winding helix angle ci with the cylinder axis\ the hoop and axial
pre!stressing forces Pu

i and Pz
i are given by eqn "0#[ The pre!stressing force vectors "00# can then

be written as\

Pu � T0P Pz � T1P "71#

where P � ðP1\ P2\ P3\ [ [ [ \ PNŁT is the resultant pre!stressing force vector of dimension ð"N−0#×0Ł
and T0 and T1 are the transformation matrices of dimension ð"N−0#×"N−0#Ł represented by\

T0 �

K

H

H

H

H

H

k

sin c1 9 9 [ [ [ 9

9 sin c2 9 [ [ [ 9

9 9 sin c3 [ [ [ 9

* * * = = [ *

9 9 9 [ [ [ sin cN

L

G

G

G

G

G

l

"72#
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T1 �

K

H

H

H

H

H

k

cos c1 9 9 [ [ [ 9

9 cos c2 9 [ [ [ 9

9 9 cos c3 [ [ [ 9

* * * = = [ *

9 9 9 [ [ [ cos cN

L

G

G

G

G

G

l

"73#

Finally\ substituting eqns "71# in "79# and "70#\ we get\

s
N

i�1

"bi−ai#ðS"i−0#
uu T0¦S"i−0#

uz T1ŁP � 9 "74#

s
N

i�1

"b1
i −a1

i #ðS"i−0#
zu T0¦S"i−0#

zz T1ŁP � 9 "75#

The pre!stressing force vector can be chosen at wish[ Therefore\ eqns "74# and "75# lead to the
following vector relations

s
N

i�1

"bi−ai#ðS"i−0#
uu T0¦S"i−0#

uz T1Ł � 9 "76#

s
N

i�1

"b1
i −a1

i #ðS"i−0#
zu T0¦S"i−0#

zz T1Ł � 9 "77#

These imply that the row vectors formed out of the matrices "SzuT0¦SzzT1# and "SzuT0¦SzzT1# are
linearly dependent\ or in other words\ these two matrices are singular with one rank de_ciency[

The singular nature of each in~uence matrix can be determined by applying speci_c pre!stressing
loading cases[ First\ let the pre!stressing forces applied be just the hoop forces Pu

i in all the layers[
This provides eqns "79# and "70# in the form\

s
N

i�1

"bi−ai#S"i−0#
uu Pu � 9 "78#

s
N

i�1

"b1
i −a1

i #S"i−0#
zu Pu � 9 "89#

Again\ based on the fact that the pre!stressing forces Pu
i can have any magnitude\ it can be

concluded from the above equations that

s
N

i�1

"bi−ai#S"i−0#
uu � 9 "80#

s
N

i�1

"b1
i −a1

i #S"i−0#
zu � 9 "81#

These relations indicate that the matrices Suu and Szu are each singular with one rank de_ciency[



M[V[ Srinivas et al[ : International Journal of Solids and Structures 25 "0888# 2834Ð2865 2850

Fig[ 4[ Distribution of local pre!stress in layers[

Now\ consider the other pre!stressing loading case where we apply only the axial forces Pz
i in

all the layers[ Equations "79# and "70# become

s
N

i�1

"bi−ai#S"i−0#
uz Pz � 9 "82#

s
N

i�1

"b1
i −a1

i #S"i−0#
zz Pz � 9 "83#

Again\ since the pre!stressing forces can be of any magnitude\ it can be concluded that Suz and Szz

are each singular with one rank de_ciency[

2[ Residual stresses due to application of known pre!stressing force distribution

For a known distribution of pre!stress forces\ the residual stresses in layers can be determined
from eqn "43#[ Simple force distributions such as constant pre!stress or gradually varying pre!
stress in layers are easy to apply and are commonly used during fabrication to reduce _ber waviness[
Here we consider two such distributions\ namely\ a constant local self!stress li � 0999 MPa in the
_ber and a combination of constant and parabolic self!stress distribution li � 499¦
499×"r−b#1:"a−b#1 MPa\ as shown in Fig[ 4[ The magnitudes of the self!stresses used here can
be caused by relatively small forces[ In order to appreciate the magnitudes\ consider the AS3:2490!
5 carbon _ber with approximate diameter of 7 mm[ A simple calculation shows that a 002 lb force
is required to generate the 0999 MPa in a 09\999 _ber tow[

The results presented here are for the fabrication of a composite cylinder having an inner radius
a � 3[64 m\ an outer radius b � 4 m and composed of 099 layers of equal thickness which are
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Table 0
Properties of AS3:2490!5 carbon:epoxy composite "Daniel and Isahi\ 0883#

Property Magnitude

Axial Young|s modulus\ E0 031 GPa
Transverse Young|s modulus\ E1 09[2 GPa
Axial shear modulus\ G01 6[1 GPa
Transverse shear modulus\ G12 2[8 GPa
Axial Poisson|s ratio\ n01 9[16
Axial tensile strength\ F0t 1179 MPa
Transverse tensile strength\ F1t 46 MPa
Axial shear strength\ F5 099 MPa
Axial compressive strength\ F0c 0339 MPa
Transverse compressive strength\ F1c 117 MPa

arranged in a repeating "9:259:891# lay!up[ The layers are made of AS3:2490!5 carbon:epoxy
composite whose properties are listed in Table 0[ The residual stresses due to pre!stress forces are
superimposed with the stresses caused by application of a hydrostatic pressure pb � 14 MPa[ Such
hydrostatic pressure can be realized at a water depth of 1499 m[

The cylinder is laid up on a mandrel during fabrication[ The radial and axial sti}ness of this
mandrel may in~uence the residual stress distribution[ It is economical to use a thin mandrel which
has low sti}ness\ rather than a very thick or reinforced\ more rigid mandrel[ In view of this\ we
consider the in~uence of the mandrel radial sti}ness on the residual stress magnitude[ For compari!
son\ the stress evaluation was done with three steel mandrels of di}erent thickness\ a very compliant
4 cm\ an intermediate 04 cm and a very sti} 0 m thick mandrel[ The results shown in the _gures
are for the 4 cm and 0 m thickness^ Tables 1 and 2 show comparisons including the 04 cm thickness[

Figures 5 and 6 show the local axial stress distribution in the completed structure for the thin
and thick mandrel\ respectively\ under constant pre!stress and external pressure[ Also shown in
the graphs are the tensile and compressive stress limits listed in Table 0[ The cylinder built on thin
mandrel experiences high compressive stresses near the inner surface which gradually decrease
towards the outer surface[ In the thick mandrel case\ the stress distribution through the wall
thickness remains almost constant[

The local transverse stress distribution for both mandrel sti}ness are shown in Figs 7 and 8[ The
thin mandrel results indicate that the stresses in the 9 and 89> layers remain almost constant through
the thickness[ The 59> layer stresses have large variations and they change from compressive stresses
near the inner surface to tensile stresses near the outer surface[ The stresses near the surfaces exceed
strength limits\ indicating the possibility of failure[ Thick mandrel results show that the stresses
are compressive\ remain almost constant throughout and do not exceed the strength limits[

The local shear stresses in both mandrel cases appear only in the 59> layers\ as shown in Figs 09
and 00[ Again\ the thin mandrel shear stress exceeds the limits near the two surfaces while the
thick mandrel results stay within the strength bounds[ Therefore\ the results for constant pre!stress
indicate that the cylinder made with a rigid mandrel can support a relatively higher magnitude of
pre!stress[
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Fig[ 5[ Local axial stresses due to constant pre!stress of Fig[ 4 and external pressure pb � 14 MPa^ mandrel thickness
4 cm[

The local axial stress distribution under a combination of constant and parabolic pre!stress\ Fig[
4\ for thin and thick mandrel sti}ness are shown in Figs 01 and 02\ respectively[ The thin mandrel
results show that the compressive stresses are higher in the inner layers\ while the thick mandrel
results show an opposite trend[ The stresses remain within the strength bounds in both cases[ The
transverse stress distributions shown in Figs 03 and 04 indicate that in both mandrel cases\ the

Fig[ 6[ Local axial stresses due to constant pre!stress of Fig[ 4 and external pressure pb � 14 MPa^ mandrel thickness
0 cm[
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Fig[ 7[ Local transverse stresses due to constant pre!stress of Fig[ 4 and external pressure pb � 14 MPa^ mandrel thickness
4 cm[

stresses in 9 and 89> layers remain constant while the 59> layer stresses show a variation[ The thin
mandrel cylinder experiences higher compression near the inner surface than the thicker one\ but
both remain within the strength limits[ The shear stress distribution in Figs 05 and 06 shows that
the thick mandrel supports high shear stress near the inner surface exceeding the shear stress limits[

Fig[ 8[ Local transverse stresses due to constant pre!stress of Fig[ 4 and external pressure pb � 14 MPa^ mandrel thickness
0 m[
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Fig[ 09[ Local shear stresses due to constant pre!stress of Fig[ 4 and external pressure pb � 14 MPa^ mandrel thickness
4 cm[

Fig[ 00[ Local shear stresses due to constant pre!stress of Fig[ 4 and external pressure pb � 14 MPa^ mandrel thickness
0 m[

Therefore\ under combined constant and parabolic distributions\ the thin mandrel cylinder can
support higher magnitudes of pre!stress than the rigid mandrel cylinder[
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Fig[ 01[ Local axial stresses due to combined constant and parabolic pre!stress of Fig[ 4 and external pressure
pb � 14 MPa^ mandrel thickness 4 cm[

Fig[ 02[ Local axial stresses due to combined constant and parabolic pre!stress of Fig[ 4 and external pressure
pb � 14 MPa^ mandrel thickness 0 m[

3[ Optimal solutions

The design of a fabrication process involves control of the residual stresses within the completed
structure such that they are well within the required strength limits[ The direct process of applying
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Fig[ 03[ Local transverse stresses due to combined constant and parabolic pre!stress of Fig[ 4 and external pressure
pb � 14 MPa^ mandrel thickness 4 cm[

Fig[ 04[ Local transverse stresses due to combined constant and parabolic pre!stress of Fig[ 4 and external pressure
pb � 14 MPa^ mandrel thickness 0 m[

the known distribution of pre!stressing forces may not always guarantee this[ Therefore\ we need
to determine the distribution of pre!stress in layers to maintain the desired level of residual stresses[

We note that the principal stress components of interest here are the global axial and transverse
stresses in layers\ which have to be kept within required levels[ The solution therefore\ involves
condition equations representing the stress levels that are large in number than the unknown
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Fig[ 05[ Local shear stresses due to combined constant and parabolic pre!stress of Fig[ 4 and external pressure
pb � 14 MPa^ mandrel thickness 4 cm[

Fig[ 06[ Local shear stresses due to combined constant and parabolic pre!stress of Fig[ 4 and external pressure
pb � 14 MPa^ mandrel thickness 0 m[

variables which are the pre!stress forces[ We seek an optimal solution for the forces that yield
desired distributions of stresses in layers[

The objective is to keep the residual stresses in all the layers at minimum[ The optimization
problem is the minimization of an objective function involving the stress variance de_ned by\



M[V[ Srinivas et al[ : International Journal of Solids and Structures 25 "0888# 2834Ð2865 2858

I � s
N

i�1

ð"si
uu#1¦"si

zz#1Ł : minimum "84#

Certain constraint conditions are imposed on the solution[ Only tensile pre!stressing forces can be
applied in the layers and therefore we have\

Pi − 9 "85#

Further\ the residual stresses caused in the layers should not exceed the strength limits[ A maximum
stress failure criterion for predicting strength limits\ imposes additional constraints on the residual
stresses[ The hoop stress si

uu and the axial stress si
zz in the global system can be resolved along the

principal material axes and equated to the corresponding axial and transverse strengths as

−Fi
0c ³

si
uu¦si

zz

1
−

si
uu−si

zz

1
cos 1ci ³ Fi

0t i � 1\ 2\ [ [ [ \ N "86#
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si
uu¦si

zz

1
¦

si
uu−si
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1
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1t i � 1\ 2\ [ [ [ \ N "87#

b
si

uu−si
zz

1
sin 1ci b³ Fi

5 i � 1\ 2\ [ [ [ \ N "88#

where F0t and F0c are the tensile and compressive strengths in the axial direction\ F1t and F1c are
the tensile and compressive strengths in the transverse direction\ F5 is the shear strength and ci is
the winding angle in the ply "i#[

The above optimization problem can be restated in a matrix form more suitable in the numerical
solution procedure described later[ We _rst write the residual stresses using relations "43# with "71#
as

suu �"SuuT0¦SuzT1#P � SuP "099#

szz �"SzuT0¦SzzT1#P � SzP "090#

Employing the above equations in the objective function "84# yields]

I"P# � PTSP "091#

where S �"ST
u Su¦ST

z Sz# is the symmetric and positive de_nite matrix[ Similarly\ the constraint
conditions "85# and "86#Ð"88# can be recast as

l ³ A ³ u "092#

where

l � ðl1\ l2\ [ [ [ \ lN\ −F1
0c\ −F2

0c\ [ [ [ \ −FN
0c\ −F1

1c\ −F2
1c\ [ [ [ \ −FN

1c\ −F1
5\ −F2

5\ [ [ [ \ −FN
5 ŁT

"093#

u � ðu1\ u2\ [ [ [ \ uN\ F1
0t\ F2

0t\ [ [ [ \ FN
0t\ F1

1t\ F2
1t\ [ [ [ \ FN

1t\ F1
5\ F2

5\ [ [ [ \ FN
5 ŁT "094#

are ð3"N−0#×0Ł vectors containing the lower and upper bound strength values of the layers\
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respectively[ Here\ li and ui\ i � 1\ 2\ [ [ [ \ N are the upper and lower limits on the pre!stress forces
Pi[ The constraint matrix A is de_ned as

A � 6
P

C7^ C � &
T2 T3

T3 T2

T4 −T4
' 6SuP

SzP7 "095#

where T2\ T3 and T4 are the transformation matrices used to transform the stresses from the global
system to the local material system[ They can be represented as

T2 �

K

H

H

H

H

k

0
1
"0−cos 1c1# 9 [ [ [ 9

9 0
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1
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1
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1
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* * = = [ *
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1
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L
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"098#

3[0[ Nonlinear optimization

A numerical solution to the optimization problem de_ned by the quadratic objective function
"091# and linear inequality constraints "092# can be solved by quadratic programming[ The
particular quadratic programming adopted here is the active set method described by Gill et al[
"0870#[ It is motivated by the fact that the optimization problem having "N−0# dimensions
corresponding to "N−0# variables is reduced in dimensionality due to nonlinear constraints[ An
active set of constraints that satisfy the equality constraints at any given feasible point is used in
solving a subproblem with equality constraints[ For a current active set P� that is known\ min!
imization is the solution of the linear equality constraint problem de_ned by

minimize
P$RN−0

I"P# �
0
1

PTSP subject to A
P � b¼ "009#

where A
 is the submatrix of matrix A whose ith row contains the coe.cients of the ith active
constraint and b¼ is the vector containing the upper or the lower bound values that are satis_ed by
the active constraints at P�[
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The necessary conditions for the minimum of the subproblem in "009# are "Gill et al[\ 0870#

, l ¾ AP� ¾ u\ with A
P � b¼[
, ZTg"P�# � 9^ or\ equivalently\ g"P�# � A
Tl�[ Here\ g"P�# � ð1I:1P1\ 1I:1P2\ [ [ [ \ 1I:1PNŁ is the

gradient vector of the objective function\ l� is the vector of Lagrange multipliers and Z is the
nullspace of A
[

, l�i − 9\ i � 0\ 1\ [ [ [ \ t where t is the number of active constraints[
, ZTSZ is positive semi!de_nite[

A correct active set is not known beforehand and therefore\ a working set to be treated as
equality constraints is selected from the original problem and iterated to obtain a correct prediction
of an active set[ These iterations are carried out in the feasible direction throughout until an
optimal solution is obtained[ Thus\ to start with\ we need to know the initial feasible point P9\ so
that the subsequent search Pk at any kth iteration are also feasible[

The solution proceeds in two phases by _nding the feasible initial point P9 in the _rst phase[
The estimation is based on the minimization of the sum of infeasibilities in P\ which is the case of
linear programming that is solved by the modi_ed version of the standard Simplex method[ The
second phase then proceeds iteratively to solve the actual quadratic problem[ The procedure after
any kth iteration step can be described as follows "Gill et al[\ 0870#]

"0# The convergence criterion for the kth step is checked[ The iteration terminates with Pk as a
solution\ when convergence is satis_ed[

"1# The minimization procedure with current working space or by deleting a constraint in the
working space is decided[ A general principle for the deletion of a constraint is that it is likely
to lower the value of the function[ The iteration jumps to step "5# if any constraint has to be
deleted[

"2# The feasible search direction is computed by performing the following operations]

, Null space Zk of the matrix A
 is obtained through TQ factorization "Gill et al[\ 0870\ 0873#[
, New search direction pk � Zkpz is determined after solving a linear set of equations

ZT
k SZkpz � ZT

k gk[
, Lagrange multipliers lk are estimated through minl >A
l−gk>1

1[

"3# Maximum feasible steplength a¹ along pk is computed and a positive steplength ak is determined
such that I"Pk¦akpk# ³ I"Pk# and ak ¾ a¹[ The iteration jumps to "6# if ak ¾ a¹[

"4# A constraint corresponding to ak is added to the working set and the associated quantities are
modi_ed accordingly[

"5# A constraint corresponding to a negative Lagrange multiplier is deleted from the working and
the associated quantities are updated[ Back to step "0#[

"6# Variables are updated and the next iteration is continued[

The results presented in this paper have been obtained using the NAG Fortran library routine
"0882#[

3[1[ Numerical example

The composite cylinder considered here is the same as that described in Section 2[ Optimal
solutions are obtained under an external pressure pb � 14 MPa[ The equilibrium constraint con!
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Fig[ 07[ Optimal pre!stresses in layers\ external pressure pb � 14 MPa^ mandrel thickness 4 cm[

Fig[ 08[ Local axial stress due to optical pre!stress and external pressure pb � 14 MPa^ mandrel thickness 4 cm[

dition indicates that the stress in~uence matrices are singular with one rank de_ciency\ hence a
free pre!stress l4 � 0999 MPa is introduced in the _fth layer[

Figure 07 shows the local self!stress distribution for optimal pre!stress in a cylinder fabricated
with 4 cm mandrel[ The self!stress distributions in 59 and 89> layers follow a combination of
constant and parabolic types\ while the 9> layers admit negligible self!stresses[ The corresponding
residual stresses in layers are shown in Figs 08Ð10 along with their strength limits[ As required by
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Fig[ 19[ Local transverse stress due to optimal pre!stress and external pressure pb � 14 MPa^ mandrel thickness 4 cm[

Fig[ 10[ Shear stress due to optimal pre!stress and external pressure pb � 14 MPa^ mandrel thickness 4 cm[

the constraint conditions\ the axial\ transverse and shear components of residual stresses in all the
layers are well within the strength limits[ The optimal local pre!stress distribution in the thick
mandrel "0 m# cylinder is shown in Fig[ 11[

Table 1 and 2 summarize the high and low magnitudes of the ply stresses\ in local coordinates
of each ply\ for the three mandrel thicknesses\ under di}erent loading conditions[ Table 1 presents
the stresses due to application of the external pressure pb � 14 MPa and the constant and combined
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Fig[ 11[ Optimal pre!stresses in layers\ external pressure pb � 14 MPa^ mandrel thickness 0 m[

constant and parabolic pre!stress distributions of Fig[ 4[ Table 2 shows the magnitudes of the same
local stresses generated by a superposition of the optimal _ber pre!stress with the external pressure
of 14 MPa and also the magnitudes of the local residual stresses caused by the optimized pre!stress
acting alone\ without the external pressure[

The results indicate that for a given pre!stress pro_le\ a sti}er mandrel will create a more uniform
residual and total stresses through the wall thickness[ For the optimized pre!stress\ the mandrel
thickness has less signi_cant in~uence on the residual stress state\ but the required pro_le is more
uniform for a thick mandrel\ Figs 07 and 11[ Note that other than the 0999 MPa choice of initial
pre!stress would produce di}erent residual and total stresses in the structure[ The same is true for
di}erent choices of ply strengths than those shown in Table 0[

4[ Closure

As in our earlier paper "Dvorak and Prochazka\ 0885#\ the principal conclusion reached from
the theory and illustrative examples is that _ber pre!stress may cause either bene_cial or detrimental
residual stress distributions in laminated cylinder structures[ Even rather moderate pre!stressing
forces may produce residual stress magnitudes that are comparable to those caused by external
tractions[ In addition\ signi_cant thermal residual stresses may be caused in structural parts or
samples exposed to uniform temperature changes induced by cooling of the entire structure from
the curing temperature[ Therefore\ careful modeling and analysis of the fabrication process should
be an essential part of design procedures for laminated composite structures[ The speci_c problems
solved herein illustrate some of the basic rules that should be followed[ Use of rather sti} mandrels
and gradual reduction of the ply pre!stress forces through the wall thickness are among the most
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Table 1
Maximum and minimum stresses due to external pressure of 14 MPa and application of constant and combined constant
and parabolic pre!stress distributions of Fig[ 4

Mandrel Mandrel Mandrel
thickness thickness thickness
t0 � 4 cm t0 � 04 cm t0 � 0 m

Local axial stress Constant pre!stress0 Max −107[281 −308[30 −365[072

isi
00 "MPa# Min −0962[391 −876[98 −648[242

Constant¦parabolic pre!stress0 Max −234[737 −153[62 −118[758

Min −777[417 −615[62 −797[588

Local transverse stress Constant pre!stress0 Max 60[243 −1[73 −52[194

si
11 "MPa# Min −200[243 −074[26 −045[494

Constant¦parabolic pre!stress Max −36[0309 −23[09 13[0900

Min −055[1709 −039[83 −018[2100

Local shear stress Constant pre!stress0 Max 008[105 67[72 31[646

si
01 "MPa# Min −006[625 −66[75 −31[286

Constant¦parabolic pre!stress0 Max 27[8601 26[91 62[9502

Min −27[1301 −25[43 −60[1602

0Fig[ 4[ 1Fig[ 5[ 2Fig[ 6[ 3Fig[ 7[ 4Fig[ 8[ 5Fig[ 09[ 6Fig[ 00[ 7Fig[ 01[ 8Fig[ 02[ 09Fig[ 03[ 00Fig[ 04[ 01Fig[ 05[ 02Fig[ 06[

Table 2
Maximum and minimum stresses due to application of optimal _bre pre!stress

Mandrel Mandrel Mandrel
thickness thickness thickness
t0 � 4 cm t0 � 04 cm t0 � 0 m

Local axial stress With external pressure pb � 14 MPa Max −513[020 −472[53 −428[59
si

00 "MPa# Min −693[440 −693[87 −694[13
Without external pressure pb � 9 Max 60[76 001[25 045[39

Min −9[76 −0[08 −0[16

Local transverse stress With external pressure pb � 14 MPa Max −39[521 −31[68 −33[71
si

11 "MPa# Min −026[011 −020[29 −016[12
Without external pressure pb � 9 Max 12[43 10[27 08[24

Min −61[85 −56[02 −52[96

Local shear stress With external pressure pb � 14 MPa Max 02[662 09[97 5[71
si

01 "MPa# Min −03[032 −09[06 −5[76
Without external pressure pb � 9 Max 02[21 8[51 5[25

Min −02[54 −8[58 −5[27

0Fig[ 08[ 1Fig[ 19[ 2Fig[ 10[



M[V[ Srinivas et al[ : International Journal of Solids and Structures 25 "0888# 2834Ð28652865

desirable design features[ Of course\ speci_c models and solutions are needed for each material
system\ fabrication method and structural application[
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