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Abstract

This is the sequel to the first part of this paper (Dvorak et al., 1999, Int. J. Solids Structures 36, 3917—
3943), concerned with modeling and analysis of laminated composite cylinder fabrication procedures, such
as filament winding or fiber placement, which involve fiber pre-stress for waviness reduction as well as overall
or local heating to and cooling from matrix curing temperatures. The fiber pre-stress applied in individual
plies is shown to cause a self-stress in the respective plies, and relaxation stresses in the already completed
plies and in the supporting mandrel. The final residual stress state is reached after mandrel removal. Influence
functions that relate the ply stresses to the applied pre-stress forces are derived. Direct problems are solved
for ply stresses caused by prescribed constant or linearly or parabolically changing pre-stress magnitudes in
the layers. A superposition of the constant and parabolic distributions is shown to lead to nearly uniform
stresses through the cylinder wall. The magnitudes depend on the radial stiffness of the mandrel that supports
the structure during fabrication. Inverse problems are formulated as nonlinear optimizations and solved by
quadratic programming. The goal is to determine fiber pre-stress distributions through the wall thickness
such that the total stresses due to external hydrostatic pressure and fiber pre-stress are as uniform as possible
through the wall thickness and confined by the ply strength magnitudes. © 1999 Elsevier Science Ltd. All
rights reserved.

1. Introduction

It is well known that relatively thick unidirectional fiber composites that are carefully manu-
factured for reduced fiber waviness and low matrix porosity can support axial compressive stresses
of significant magnitudes (Daniel and Isahi, 1994). In large structures that are produced by fiber
placement or filament winding, fiber waviness can be reduced by fiber pre-stress applied prior to
curing. Relatively small forces are needed, for example a 113 1b force is shown to cause a 1000
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MPa pre-stress in a typical 10,000 filament tow. However, apart from the potentially beneficial
effect on ply compressive strength, the consequences of fiber pre-stress applied in a large laminated
structure are not well understood.

This paper examines the residual stresses caused by fiber pre-stress applied in individual plies
during fabrication of a laminated cylindrical structure. Using the theoretical framework developed
in Part I (Dvorak et al., 1999) we establish in Section 2 a set of influence functions that evaluate
the ply residual stresses in terms of the pre-stress forces applied to the individual layers of the
laminate. We also examine the effect of cooling from the curing temperature on the residual stress
state and show that very different residual states can be caused by either overall heating and
cooling of the entire cylinder, or by local heating applied in fiber placement procedures. Then, in
Section 3, ply residual stresses are found for certain prescribed distribution of fiber pre-stress
magnitudes through the cylinder wall thickness. In particular, constant pre-stress applied uniformly
to all plies is shown to produce possibly high stress gradients, with compressive stresses at the
inner surface that may impair the load bearing capacity of the structure. More favorable, nearly
uniform residual stresses are found in the cylinder wall with variable pre-stress distributions.
Finally, Section 4 presents a nonlinear optimization procedure for solving the inverse problem of
finding fiber pre-stress distribution that generates minimized residual stresses that do not exceed
certain prescribed magnitudes. In superposition with the stresses due to the applied hydrostatic
pressure, the residuals produce total stresses that lie within given ply strength limits. The desirable
pre-stress distribution is found to depend, in part, on the stiffness of the mandrel that supports the
composite structure during fabrication.

2. Model of the fabrication process

The fabrication procedure model adopted here applies to a cylindrical laminated structure laid
up in successive layers on an elastic mandrel of certain radial and axial stiffness. Fiber placement
with in situ curing, or lay-up and curing of either new layers on already cured layers, or of all
layers at once, can be represented by the model. As in Part I, Section 2, each layer is assumed to
be a cylindrically orthotropic elastic solid with known elastic moduli representing a single ply of
certain orientation, or the mandrel. In the analysis, the mandrel is denoted as layer i = 1, and the
laminate layersasi =2, 3,..., V.

During curing, the fibers in the composite layers are pre-stressed at the curing temperature by a
certain force P;. This force can be resolved into its components in the cylinder hoop and axial
directions as P? and P, respectively. The P!/P: ratio depends on the angle that the helix trajectory
of the fiber contains with the cylinder axis. After all the layers have been laid, the mandrel is
removed, leaving a (N—1) layered cylindrical laminate.

During the fabrication process, initial strains are introduced by the pre-stress forces and by
cooling of the layers from the curing temperature, hence residual stresses are generated in the
structure as it is built up on the mandrel. At completion of the fabrication process, the mandrel
itself supports certain radial traction force R and a total axial force Z. After mandrel removal, the
residual stress state is changed by superposition with stresses caused by internal radial force — R
and axial force —Z.

In what follows, the respective contributions to the final residual stress state will be evaluated
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in terms of stress averages in the layers. The self-stress caused by fiber pre-stress will be denoted
by {@)”, the relaxation stress in the existing layers due to tractions imposed by pre-stressing the
current layer by <{¢), the superposition of these stresses that describes the stress state in the
completed structure prior to mandrel removal by {(¢)’, and the stresses induced by mandrel removal
by {6)°. The superposition of the last two states provides the final residual stress distribution in
the structure.

2.1. Self-stress

As in Part I, Section 2, consider a cylindrical layer (i) of inner radius a,, outer radius b, and
thickness ¢, = b;—a;. Let y;, denote the angle that all fibers in the layer (i) contain with the
longitudinal z-axis of the cylinder. The self-stress {¢'>* in layer (i) is caused by application of a
certain pre-stress force P; to each fiber in its winding direction yy,, both before and during curing;
therefore, this stress is preserved after curing as part of the total fiber stress. The fiber pre-stress
force components in the hoop and axial directions are,

P! = P;siny P; = P.cosy (1)

The axial and hoop components of the self-stress in the cylinder coordinate system of Fig. 1 of
Part I (Dvorak et al., 1999) can be found as follows. Consider a small square element of the ith
layer in the 0z-plane, where the 0-axis is in the hoop direction and z-axis in the longitudinal
direction of the composite cylinder. For simplicity, let the reinforcement be represented by a
monolayer of fibers of diameter d; and spacing s, evaluated in terms of fiber volume fraction ¢; as,

Ok o

4t;cy

This represents the average distance between the fiber axes measured in the direction perpendicular
to the fibers in each ply. However, in the planes perpendicular to the - and z-axes of the cylinder,
the average distances between the fiber axes will be,

. s
s = —— onplanes 0 = const. 3
Sy, p (3)
o I ¢ )
Sh = on planes z = const.
"7 cosy, P

Since the force P; are applied to the individual fibers, the hoop and axial components of the self-
stress {¢'>* are related to the force components (1) as,

_ P}

{o9)” = g1 (5)
4 P;

o2)" = —— (6)

Sé)ti
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Substituting for (1)—(4) eliminates the auxiliary parameters s; and ¢; and provides the self-stress

components in the form:

4¢iP; sin® . 4ciP;cos ;
i g (o> =Y >
n(d)) n(d))

where the expression 4P;/(n(d})*) represents the magnitude of the actual pre-stress applied to the

fibers. Note that {aj,>* = 0 for 0° plies, {c..>* = 0 for 90° plies and <{a},>* = 3<{a..>* for 60° plies.
Let the hoop and axial stress averages in each layer be expressed as

(ohp)" = (7

ato = [<ai>", <ai>", <T>"s - -, a0 )"]" ®)

6% = [(02.)",<a.)", (et )", ..., {al)"]" ©)
Substituting for the stress components in (8) and (9) from (7) and (8)

o5y = SioP’ + S5 P o’ = S,WP'+ 8. P (10)
where

P’ =[P5, PSP, ....PY]" P =[P3,P5, P, ..., P3]" (11)

are the [(V—1) x 1] pre-stressing force vectors in the 0 and z directions, respectively. The S3, S;.,
5% and 87 are [(N—1) x (N—1)] matrices that represent the self-stress influence functions,

s
47 siny, 0 0
n(d})?
4¢} sin, 0
n(d})?
St = 0 o gsind. 0 (12)
n(d})?
0 0 0 4e siny ST ‘f’N
i n(dy)
dgoosys o 0 |
n(d})?
4c¢} cos i, 0
n(d})?
%= 0 o ddcosve (9
n(d})?
0 0 0 4c}-vccl)vssz
| n(dy)
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8h.=8%=0 (14)

2.1.1. Thermal stress as part of self-stress

Thermal stresses are created in the structure, for example, by cooling from the curing tempera-
ture. In the case of a large structure fabricated by in situ fiber placement involving only local
temperature changes, the thermal stresses can be evaluated and included as part of the self-stress.
Consider a process where a new layer () is laid on already cured (j— 1) layered cylinder. If a fiber
tow being laid is free to contract during cooling, the thermal strain would be

Aely = o AT (15)

where o, is the axial thermal expansion coefficient of the fiber and AT the temperature change.
However, the free contraction is restrained by the (j—1) layered cylinder. Assuming that the
already cured cylinder is rigid enough to completely restrain the radial and axial contraction the
pre-stressing force due to the temperature change is,

n(d))*

AP =
T4

E A, (16)
where E/, is the axial Young’s modulus of the fiber. In the fiber placement process, this force is
added to the pre-stressing force vectors (11).

If filament winding or wet lay-up are used together with curing of some or all layers, the partially
or entirely completed structure undergoes thermal cycling that creates a uniform thermal change
in the fabricated layers. As shown in the first part (Dvorak et al., 1999, Section 7), the thermal
stresses are not very high, hence cyclic elastic response is anticipated. Therefore, while the residual
stress state changes with the addition of each layer, the final state is that in the completed cylinder
that has been subjected to uniform cooling from a stress-free state at the curing temperature. It is
probably obvious that entirely different residual stress fields are caused in a given structure by the
different fabrication procedures.

2.2. Relaxation stresses

These stresses are caused in the already cured layers i =2, 3,...,(j—1) by applying the pre-
stressing forces P; (Fig. 1) in the layer j. The hoop component of the pre-stressing force P¢ applied
a radial traction pja;, where the radial pressure p; can be derived from the equilibrium in the layer

(j) as
o_ {ahp)™t; _ 4c)( P siny it
! a; n(d))’a;

17
Similarly, the axial component P; generates an axial traction {jn(b; —a;). The axial stress {;in the
new layer (/) is equivalent to the axial self stress {o’,>*, therefore,
4cjP5Y° cosy,

n(d))?

Internal stresses due to unit radial pressure p; = 1 and unit axial stress {j = 1 are first obtained

f=Kol.)" = (18)
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unit traction
0 00
pb = <|='j > =1
prestressed fibers
in layer j

Fig. 1. Stress state during fabrication and fiber pre-stress sequence.

from the solution procedure described by Dvorak et al. (1999). These unit stress solutions are then
used to write the hoop and axial stresses in each layer caused by the actual fiber pre-stress forces
PY and P;.

Note that the radial traction and axial force both generate radial, hoop and axial stresses in the
layers. The stresses caused by unit radial traction p; are denoted as <a7.)7, <o.)>3,
o105+ 5 <T0D (= 1yjs {607 {65972, 050535+ - K000 (- 1) a2 CoL.0%,
<O-g:>§Ja cees <O-£:>E>j7 IBWE

The stresses caused by the unit axial stress (; are denoted as, {a*, s {65 J»
<O-§r>§z/'a cees <O-§Vr>?jf 1), <U§9>C1J,ja <O-§9(9>3,j’ <0'§9>§,/> cees <6(%9>E>j7 1), (o, 1o <6§z>§,/’9
<0'§:>C3),/a cees <O-§:><()j7 1),

The relaxation stresses (denoted by the superscript ) caused in the layers of the completed
structure by the actual pre-stressing forces PY and P; are obtained by superposition of the
contributions from pre-stressing of each layer j =2, 3,,..., N

X (e @,
iNB _ J | po J | p=

@)= 2 {[<P?>O]P’ " [<P;’->O}P’} (1
| (o, (S0,
N J | po J | p=

@ = 2, {[ (PIy? }P’ " [ (P3y }P} 20
i N <6§z>?' <G§z>?' -
i N — >J 0 >/ z

@)= 2 {[<P?>O}P’+ [<P§>O}P-’} -

Expressing the hoop and axial relaxation stresses in the vector form

O'gg = [<062)9>ﬁ5 <659>ﬁ9 <O-g€>ﬁ7 R <0«%>ﬂ]T (22)
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ol. = [(a2 ), (a2 )l (ol ), ... . (al)]" (23)

and substituting for the stress components {a5,>" from (19)—(21) will yield,

O'gg = SgHPH—I_SgZPZ o.f: = S59P9+S§ZPZ (24)

where S, S5, S%, and S’. are the relaxation stress influence functions of dimension
[(N—1) x (N—1)] given by,

<059>3,3 <059>3,4 <O-50>3,N71 <059>3,N ]
(PS5 (PYH° (PR )? (PYY?
<050>§,4 <U§0>§,N71 <059>§,N
P() o P() o P() o
oo P GRS 05)
0 0 0 <0'§9>5)v71,1v
5
0 0 0 0 |
<0'50>3,3 <0'g0>3,4 <6§)0>(2),N—1 <O-§)()>S,N ]
(P37 (Py)° CPy-1)° (Py)°
<U§9>§,4 <O-?;6><3>,N—1 <059>§,N
PZ o] PZ o PZ o]
o P CENRGD 6
0 0 <0'?y10>7v-1,zv
(P
0 0 0 0 i
<0'§:>3,3 <0'£:>2,4 <U§:>3,N7] <U§:>§,N ]
(P5YT Py (PH_1)° (Py°
<O-’z):>§,4 <6gz>§,N71 <O-’z):>§,N
P() o PO o P0 o
o, PP CENRE o
0 0 <O-£z>§Vfol,N
Py
0 0 0 0
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<0'§z>3,3 <0'§:>3,4 <U§:>3,N71 <0'g >3N ]
(P3Y” (P (P Py
0 <0'g >C%>4 <0’§:>§,N71 <0'g:>3,1v
s=|, . v oo P (28)
0 0 0 <0'C DN—1 N
(PVY°
L0 0 0 0 0 i

While the completed composite cylinder remains supported by the mandrel, the average stresses
in the mandrel and layers follow by adding the above self-stress and relaxation stresses,

oy = SpP’+Sp.P° ol = S,P'+S.P° (29)
where

oy =64 +ahy 6l =6 +al. (30)
and

Sho = Sto+Shy  Sh. = ;. + 8. (3D

Sy =S8%+8y S.=8.+5. (32)

2.3. Mandrel reaction stresses

The radial and axial reactions exerted by the mandrel on the completed structure can now be
evaluated from (19) and (21) as

{at, >y 0 <O-§‘r 1y -
{[<P">O]P”+[<P7>O}P”} &)
o ST ey
“=2 {[<P> ]P-’+[<P5>O}P’} GY

The effect of the mandrel removal is equivalent to application of the radial traction — R at the
inner surface r = a, and — Z, at both ends of the no longer mandrel supported cylindrical structure.
The corresponding components of average stresses in the layers are,

<0§9>R = — Rapy); <0'§)0>Z = —Z{0G); (35)
(L) = —R(al.)y;  (ol.)? = —Z{a%); (36)

where the <o, >; and <{o..); are layer average stresses due to unit radial pressure —P,/(a,L) = 1
applied at r = @, and {a§,)>; and {¢%.); are the layer average stresses caused by a unit axial stress
P./[n(bi —a})] = 1, respectively; both are dimensionless.

R

Il
HMZ
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Using the matrix form, eqns (35) and (36) are written as

R __ R 0 R Dz
690 = SopP" + S8y P

7z Wz 0 7 Dz
650 = SopP" + S84.P

o = SRP'+ SRP° 67 =S,P'+ S P

where the [(N—1) x 1] stress vectors are
oty = [<a50>", {a50 )", (a0 )", . ... (oo "]

0-07}) = [<65()>Za <O-30>Za <O-;)10>Za B <O-(%>Z]

]

o

NN

J

= [Co2)%, (o2)", (a2 )", ... (ol )"]
= [€02)%,<02)7, (o), ... . (ol )7]

The [(N—1) x (N—1)] stress influence functions in (37) and (38) are

R __
00 —

Z
00 —

R __
0z —

Laiadaids (o adois
(PYY” (PYy”
IR BRI
(P’ CPYy’
RN RGN R
(PYy’ (PYy”
oty alyiadatns
(PYy* Py’
R R DR GG
(PYY* (PYy”
R G D IR G
(PYy* Py’
RGN BRGNS
(P’ (P3)°
R RGO IR

(P3)°

. <O-Er (1),2<0'f)0>§)v

(P3)°

. <O-Er ?,3 (oo N

(P3)°

(P3)°

RTINS
CPYY?

PRy

RGN

Py

RESRG IR

(PYY”

RGPS

(PYY”

RGOS

CPhY"
RGOS

CP3y°
REGDE

CPiy°

RGN

(PRy”

|
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(37
(38)

(39)
(40)

(41)
(42)

(43)

(44)

(45)
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R
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i _ {at. 12400005 _ <0§z>?,3<039>3

(P3)°

0L.)724a00)5

(P3)°

(P3)°

{aiadain <alyiadaiR

RERGD

(P3)°

(P3)°

{adiadas

(P3)°

RUNREGSY

Py
RUNRGST

(P
 {ohadons

(P5)°

otaal

(P5H°

ohiadal

(P5)°

o <O-§: Cl),2<o-(zls>c2)

(P5)°

IRCATRGHS

(P3)°
N <6:pz>T,2<o-gz>§

(P5)”
. <O-§z>{]),3 <O-?z>§

(P5)°

o <6€z>?,2<agz>lo\/

(P5°

RCATRGS

(P5y”

. <O-§r T,2<J_{z>g

(P5)”

. <O-£r ?,3<6:: 3

(P3)°

o <6§r (l),2<6;:>§

(P3)°

o <O-£r <1),3 <O-f'z>§

(P3)°

RIS

(P3)°

_ <G§r [l),3 <O-22>ON

(P3)°

(P3)°

RCSRG

(Pyy”

RCRE DS

(Pyy”

RGN

(Pyy”

GG

PRy
UG
0%

RIS

(PR

{atiadots
(PRY?

RTINS
%

o <O-§: Cl),N<O-(zlz>?V

(PYY”

GG
CPiy°

GG
CP3y°

o <O-§r T,N<O-;:>?V

(PRY”

1

(46)

(47)

(48)

(49)
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[ CaaCatys (e Tadats RGN,
(P3)’ Py T (P3y°
IR BRSNS RGNS
S = (P3)* Py (P3y° (50)
R BRGSO
Ly Py T Piye

The total average stresses in the layers caused by application of tractions — R and — Z in (35)
and (36) are then equal to

o5 = SHP'+S0.P° 6l = S,P'+ S0P (51)
where

oo = Siy+ S5 0. = Sk +S7. (52)

S = SH+8% S =SK+S87 (53)

2.4. Total residual stresses

A superposition of the layer stress averages due to self-stress, relaxation stress and reaction
stresses provides the total residual stress state in all layers of the composite structure. Thus, adding
equations (10),, (24), and (51), yields the overall residual hoop stress while equation (10),, (24),
and (51), give the overall residual axial stress. These stresses can then be written as,

6o = SpP’ + 8. P 6..=S,P+S.P (54)
where again, the influence functions have the dimensions [(N—1) x (N—1)] and are given by

Soo = Sio+Sh+Si  So. = Si. + S5+ (55)

So=S8y+8+S8,  S.=S.+S+8. (56)

2.5. Equilibrium constraints

Here we introduce force equilibrium equations that impose certain constraints on the two
residual fields (29) and (54) and on the reaction stresses (51). First, consider the stress state in the
completed structure still supported by the mandrel. In the absence of any external loads, Fig. 2,
the force equilibrium in the hoop and axial directions, for the stresses (29), becomes

L[(by —a)<009)" + (by — a>)< 09" + (bs —a3){ o) +- -+ (by —an)<ap '] = 0 (57)
nl(bi —ai)<ol.)"+ (b3 —a3)<oZ)" + (b3 —a3){ol)’ +- -+ (i —ar){cX)']1 = 0 (38)

The stress components {a}, >’ and {a..>" can be expressed in the matrix form

Cop)" =[Sty "TP +[SI= TP i=2,3,4,....N (59)
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N
<cee>¥

Lo x
3
< Cgo >2Y 3
<o »
< Cgo
Fig. 2. Equilibrium stress state in the mandrel-supported cylinder.
(o)) = [SG "TP+[STVTP i=2,3,4,...,N (60)

where [S)]", [S).]", [S,]” and [S..]” are the [1 x (N—1)] row vectors formed out of the jth row of
the influence functions S}, Sj., S’y and S, in (31) and (32), respectively.

Substituting the stress relations (59) and (60) in the force equilibrium conditions (57) and (58)
gives,

(b, —a)<alyy' + 3. (b,— a) Sl PP [SE VTP =0 (61)
(B —ad)oLly + Y. (2 —a) Sy PP [SE VTP =0 ©)

Next, consider the stress state (51) caused in the completed and unsupported structure, assumed
now to be free of residual stress, by the traction — R applied at the inner surface r = @, as shown
in Fig. 3. Force equilibrium in the hoop and axial directions provides:

L[(b> —a>)<j0>" + (b3 —a3){ai> " + (bs — as){c3>" + -+ -+ (by—ay)<{op>"] = Ra,L  (63)
n[(b3 —a3){02.)" + (b3 — a3)<o )" + (b3 —ai)<oZ )"+ -+ (by —an)<{o2)*] = 0 (64)

Substituting for the stress components in the above equations from (37), and (38),,

—Ray+ Y (b= a) ([SH P [SE V1P = 0 (65)
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Fig. 3. Equilibrium stress state in the cylinder after mandrel removal.

N
> (b7 —a){[S% V1P +[SL V1P =0 (66)
i=2
where [S),]%, [S).]%, [S.,]* and [S..]¥ are [1 x (N—1)] row vectors formed out of the jth row of the
influence functions S§,, S§, S% and SX, respectively.
Similarly, if the axial forces —Z are applied to both ends of the stress-free and unsupported
composite structure, the force equilibrium for the fields (37), and (38), can be written as,

3 (b,—a) ISl VPP [SE PP =0 (©7
2B —ad)+ Y (6 — ) (IS PP ST P = 0 (68)

where [S),]%, [S).]%, [S,]# and [S..]* are [1 x (N —1)] row vectors formed out of the jth row of the
influence functions S%, S7., 8% and S%, respectively.

Now, adding the hoop stress relations (61), (65) and (67) and the axial stress relations (62), (66)
and (68) gives,

—a; R+ (b, —a,){o4)" + _Zz(bf —a) {([Shy "1 + Sk "1" +[Shs V1) P’

+ (ST ISP+ ISIT )P =0 (69)
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— (bt —ai)Z+ (b1 —ai){ol.)’ + Z (b7 —a) {(([S% "1 +[S5% 1° + S5 V19 P’

+([SE V) +[SE VI HSE )P =0 (70)
Making use of (29)—(32), (37)—(38) and (51)—(56), eqns (69) and (70) can be simplified as,

N

— Ra, + (b, —a1)<0'$0>”+ z (bi— a){ go I)Po‘*'s(()iz_l)Pz} =0 (71)
i=2

—(bi —a)Z+ (b1 —ai){a: )"+ Z (b7 —a}) {8 VP + ST VP =0 (72)

where S),, S)., S, and S, are [1 x (N—1)] row vectors formed out of the jth row of the influence
functions Sy, )., S., and §.., respectively.

Following eqns (20) and (21), the stresses {aj,>’ and <{¢..)” in the above equations can be
expanded as,

1Ny {007, <0'99>1;
<o _Z {[<P0> }P"+[<P9> }P} 7
L <6’z’_~>?,,] [<Gi ] }
1N = P’ P 74
(7= ,-Zz{[@?w RS 74

The hoop stresses (a4, >, and {ajs>;,; in (73) are further replaced by their corresponding radial
stresses. Referring back to the construction stage (17) and (18), where the jth layer is being laid on
already cured (j—1) layers, a free body diagram of the mandrel along with the forces acting on it
due to a unit load p; =1 in the jth layer is considered, as shown in Fig. 4. The equilibrium of
forces in the mandrel layer requires

<059>1,/‘ = <Grr>]/ (75)

(by —ay)

Similarly, the equilibrium in the mandrel due to a unit pre-stressing force {; = 1 in the jth layer
gives

<069>1}/ = < II>]J (76)
(b 1)
Substituting (75) and (76) in (73) yields:
. @ [ N {[@fr ?Z,} P [<0§r>?z,} PZH 7
<0€9> (b al) Z <P$)>O J <P§>o J ( )
Comparing eqns (77) and (33), one can conclude that
_azR+(b1_al)<0'(l)o>y =0 (78)

Also, from eqns (74) and (34),
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— (b1 —a)Z+(bi —ai)<o.)" =0

PO

a, oo™

b(or a,)

Fig. 4. Stress state in the mandrel.

The relations (78) and (79) further simplify the eqns (71) and (72) as,

N
Y. (bi—a){Shy "P'+ S VP =0
i=2

N
> (b7 —a}){S% VP + ST VP =0
i=2

3959

(79)

(80)

(81)

It is however, necessary in fabrication to apply the pre-stressing force P; in the direction of
winding. Thus, if the layer has a winding helix angle y; with the cylinder axis, the hoop and axial
pre-stressing forces P! and P; are given by eqn (1). The pre-stressing force vectors (11) can then

be written as,

P’ =T,P

P=T,P
where P = [P,, P5, P,, .

(82)

.., Py]" is the resultant pre-stressing force vector of dimension [(N—1) x 1]

and T, and T, are the transformation matrices of dimension [(N—1) x (N—1)] represented by,

siny,
0
Tl = 0

0

sin
0

0
0

siny,

0
0
0

sinyy |

(83)
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[cosy, 0 0 0 7
0 COS /5 0 0
T, = 0 0 cosy, 0 (84)
.0 0 0 cosry |
Finally, substituting eqns (82) in (80) and (81), we get,
Z(b S VT, +SVT,|P=0 (85)
N .
2. (b =a)SG VT + 8TV TLIP =0 (86)

The pre-stressing force vector can be chosen at wish. Therefore, eqns (85) and (86) lead to the
following vector relations

N
Z bi—a)[Sty " T, + S5 "T,] =0 (87)
Z(bz—az) ST, +8T T, =0 (88)

These imply that the row vectors formed out of the matrices (S.,7,+S..T,) and (S., T, + 8..T,) are
linearly dependent, or in other words, these two matrices are singular with one rank deficiency.

The singular nature of each influence matrix can be determined by applying specific pre-stressing
loading cases. First, let the pre-stressing forces applied be just the hoop forces P! in all the layers.
This provides eqns (80) and (81) in the form,

N
Y. (bi—a)Si VP =0 (89)
i=2
N
2. (b7 —a})S VP =0 (90)
i=2

Again, based on the fact that the pre-stressing forces P! can have any magnitude, it can be
concluded from the above equations that

N
z (bi_ai)SgO_l) =0 1)
i=2
N
Y (b —a})S " =0 92)

These relations indicate that the matrices Sy, and S., are each singular with one rank deficiency.
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Fig. 5. Distribution of local pre-stress in layers.

Now, consider the other pre-stressing loading case where we apply only the axial forces P; in
all the layers. Equations (80) and (81) become

N
Z (bi_ai)s(()izil)Pz =0 93)
i=2

M=

(b7 —a?)STVP =0 (94)

i=2

Again, since the pre-stressing forces can be of any magnitude, it can be concluded that .S, and S..
are each singular with one rank deficiency.

3. Residual stresses due to application of known pre-stressing force distribution

For a known distribution of pre-stress forces, the residual stresses in layers can be determined
from eqn (54). Simple force distributions such as constant pre-stress or gradually varying pre-
stress in layers are easy to apply and are commonly used during fabrication to reduce fiber waviness.
Here we consider two such distributions, namely, a constant local self-stress 4, = 1000 MPa in the
fiber and a combination of constant and parabolic self-stress distribution A4, = 500+
500 x (r—b)?/(a—b)* MPa, as shown in Fig. 5. The magnitudes of the self-stresses used here can
be caused by relatively small forces. In order to appreciate the magnitudes, consider the AS4/3501-
6 carbon fiber with approximate diameter of 8 um. A simple calculation shows that a 113 lb force
is required to generate the 1000 MPa in a 10,000 fiber tow.

The results presented here are for the fabrication of a composite cylinder having an inner radius
a =4.75 m, an outer radius » = 5 m and composed of 100 layers of equal thickness which are
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Table 1
Properties of AS4/3501-6 carbon/epoxy composite (Daniel and Isahi, 1994)

Property Magnitude
Axial Young’s modulus, E, 142 GPa
Transverse Young’s modulus, E, 10.3 GPa
Axial shear modulus, G, 7.2 GPa
Transverse shear modulus, G, 3.9 GPa
Axial Poisson’s ratio, v;, 0.27
Axial tensile strength, F), 2280 MPa
Transverse tensile strength, F,, 57 MPa
Axial shear strength, F 100 MPa
Axial compressive strength, F, 1440 MPa
Transverse compressive strength, F., 228 MPa

arranged in a repeating (0/+60/90,) lay-up. The layers are made of AS4/3501-6 carbon/epoxy
composite whose properties are listed in Table 1. The residual stresses due to pre-stress forces are
superimposed with the stresses caused by application of a hydrostatic pressure p, = 25 MPa. Such
hydrostatic pressure can be realized at a water depth of 2500 m.

The cylinder is laid up on a mandrel during fabrication. The radial and axial stiffness of this
mandrel may influence the residual stress distribution. It is economical to use a thin mandrel which
has low stiffness, rather than a very thick or reinforced, more rigid mandrel. In view of this, we
consider the influence of the mandrel radial stiffness on the residual stress magnitude. For compari-
son, the stress evaluation was done with three steel mandrels of different thickness, a very compliant
5 cm, an intermediate 15 cm and a very stiff 1 m thick mandrel. The results shown in the figures
are for the 5 cm and 1 m thickness; Tables 2 and 3 show comparisons including the 15 cm thickness.

Figures 6 and 7 show the local axial stress distribution in the completed structure for the thin
and thick mandrel, respectively, under constant pre-stress and external pressure. Also shown in
the graphs are the tensile and compressive stress limits listed in Table 1. The cylinder built on thin
mandrel experiences high compressive stresses near the inner surface which gradually decrease
towards the outer surface. In the thick mandrel case, the stress distribution through the wall
thickness remains almost constant.

The local transverse stress distribution for both mandrel stiffness are shown in Figs 8 and 9. The
thin mandrel results indicate that the stresses in the 0 and 90° layers remain almost constant through
the thickness. The 60° layer stresses have large variations and they change from compressive stresses
near the inner surface to tensile stresses near the outer surface. The stresses near the surfaces exceed
strength limits, indicating the possibility of failure. Thick mandrel results show that the stresses
are compressive, remain almost constant throughout and do not exceed the strength limits.

The local shear stresses in both mandrel cases appear only in the 60° layers, as shown in Figs 10
and 11. Again, the thin mandrel shear stress exceeds the limits near the two surfaces while the
thick mandrel results stay within the strength bounds. Therefore, the results for constant pre-stress
indicate that the cylinder made with a rigid mandrel can support a relatively higher magnitude of
pre-stress.
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Fig. 6. Local axial stresses due to constant pre-stress of Fig. 5 and external pressure p, = 25 MPa; mandrel thickness
Scm.

The local axial stress distribution under a combination of constant and parabolic pre-stress, Fig.
5, for thin and thick mandrel stiffness are shown in Figs 12 and 13, respectively. The thin mandrel
results show that the compressive stresses are higher in the inner layers, while the thick mandrel
results show an opposite trend. The stresses remain within the strength bounds in both cases. The
transverse stress distributions shown in Figs 14 and 15 indicate that in both mandrel cases, the

3000
Axial tensile stress limit

2000 |
T
o
=
g 1000 }
"3
7]
2
>
®
= 0 |
«
E WW-[WWI
(4]
o
-

-1000 |

Axial compressive stress limit
-2000 . e . .
4.75 4.80 4.85 4.90 4.95 5.00

radius, r [m]

Fig. 7. Local axial stresses due to constant pre-stress of Fig. 5 and external pressure p, = 25 MPa; mandrel thickness
1 cm.
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Fig. 8. Local transverse stresses due to constant pre-stress of Fig. 5 and external pressure p, = 25 MPa; mandrel thickness
Scm.

stresses in 0 and 90° layers remain constant while the 60° layer stresses show a variation. The thin
mandrel cylinder experiences higher compression near the inner surface than the thicker one, but
both remain within the strength limits. The shear stress distribution in Figs 16 and 17 shows that
the thick mandrel supports high shear stress near the inner surface exceeding the shear stress limits.
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Fig. 9. Local transverse stresses due to constant pre-stress of Fig. 5 and external pressure p, = 25 MPa; mandrel thickness
I m.
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Fig. 10. Local shear stresses due to constant pre-stress of Fig. 5 and external pressure p, = 25 MPa; mandrel thickness
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Fig. 11. Local shear stresses due to constant pre-stress of Fig. 5 and external pressure p, = 25 MPa; mandrel thickness
I m.

Therefore, under combined constant and parabolic distributions, the thin mandrel cylinder can
support higher magnitudes of pre-stress than the rigid mandrel cylinder.
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Fig. 12. Local axial stresses due to combined constant and parabolic pre-stress of Fig. 5 and external pressure
P, = 25 MPa; mandrel thickness 5 cm.
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Fig. 13. Local axial stresses due to combined constant and parabolic pre-stress of Fig. 5 and external pressure
p» = 25 MPa; mandrel thickness 1 m.

4. Optimal solutions

The design of a fabrication process involves control of the residual stresses within the completed
structure such that they are well within the required strength limits. The direct process of applying
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Fig. 14. Local transverse stresses due to combined constant and parabolic pre-stress of Fig. 5 and external pressure
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Fig. 15. Local transverse stresses due to combined constant and parabolic pre-stress of Fig. 5 and external pressure
P, = 25 MPa; mandrel thickness 1 m.

the known distribution of pre-stressing forces may not always guarantee this. Therefore, we need
to determine the distribution of pre-stress in layers to maintain the desired level of residual stresses.

We note that the principal stress components of interest here are the global axial and transverse
stresses in layers, which have to be kept within required levels. The solution therefore, involves
condition equations representing the stress levels that are large in number than the unknown
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Fig. 17. Local shear stresses due to combined constant and parabolic pre-stress of Fig. 5 and external pressure
P, = 25 MPa; mandrel thickness 1 m.

variables which are the pre-stress forces. We seek an optimal solution for the forces that yield
desired distributions of stresses in layers.

The objective is to keep the residual stresses in all the layers at minimum. The optimization
problem is the minimization of an objective function involving the stress variance defined by,
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N . .
I= Y [(g4)* +(c:)*] - minimum 95)
i=2
Certain constraint conditions are imposed on the solution. Only tensile pre-stressing forces can be
applied in the layers and therefore we have,

P, >0 (96)

Further, the residual stresses caused in the layers should not exceed the strength limits. A maximum
stress failure criterion for predicting strength limits, imposes additional constraints on the residual
stresses. The hoop stress ), and the axial stress ¢’ in the global system can be resolved along the
principal material axes and equated to the corresponding axial and transverse strengths as

; i i i
Ogp+0.. OGp—0:

e < s T 3 “cos2y, < Fy i=23,...,N 97)
. Optol.  op—oL. o
—Fl <7 S Teos2y < Fh i=23,...N (98)
“"‘*;””sinzlp,. <F, i=23,....N (99)

where F;, and F,_ are the tensile and compressive strengths in the axial direction, F,, and F,. are
the tensile and compressive strengths in the transverse direction, Fj is the shear strength and v, is
the winding angle in the ply (7).

The above optimization problem can be restated in a matrix form more suitable in the numerical
solution procedure described later. We first write the residual stresses using relations (54) with (82)
as

oo = (SpoT1 +Sp.T,)P = S, P (100)

6..=(S,T,+S..T,)P=S.P (101)
Employing the above equations in the objective function (95) yields:

I(P) = P'SP (102)

where S = (875, +S57S.) is the symmetric and positive definite matrix. Similarly, the constraint
conditions (96) and (97)—(99) can be recast as

I<A<u (103)
where
l=1[L,0,....Iy,—F, —Fi,...,—Fy, —F3., —F3.,...,—FY, —F¢, —F¢,...,—F{1"
(104)
u=uusy,.. uyFi,Fi, . ..,FNF3,F>5, .. .,Fy,Fe,Fs,...,F)" (105)

are [4(N—1) x 1] vectors containing the lower and upper bound strength values of the layers,
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respectively. Here, /; and u,, i = 2, 3, ..., N are the upper and lower limits on the pre-stress forces
P,. The constraint matrix A is defined as

T, T,
A= Plocoln 1 SoP (106)
- Ca - 4 3 S_,P
T, —T;

where T;, T, and T are the transformation matrices used to transform the stresses from the global
system to the local material system. They can be represented as

_%(1—0052%) 0 0

T, - 9 %(l—c?s2l#3) 9 107)
L O 0 %(l—cc‘)s2lp,v)_
_%(H—colepz) 0 0 i

I — 9 ;(1+c?s2¢3) 9 (108)
i 6 0 g(1+cés2¢N)_
[ sin 2y, 0 0

T, - 0 %sin'2tp3 0 (109)
| 0 0 %sin.ZIpN

4.1. Nonlinear optimization

A numerical solution to the optimization problem defined by the quadratic objective function
(102) and linear inequality constraints (103) can be solved by quadratic programming. The
particular quadratic programming adopted here is the active set method described by Gill et al.
(1981). It is motivated by the fact that the optimization problem having (N—1) dimensions
corresponding to (N—1) variables is reduced in dimensionality due to nonlinear constraints. An
active set of constraints that satisfy the equality constraints at any given feasible point is used in
solving a subproblem with equality constraints. For a current active set P* that is known, min-
imization is the solution of the linear equality constraint problem defined by

o 1 . - -

minimize /(P) = EPTSP subjectto AP =b (110)
PRV~

where A4 is the submatrix of matrix 4 whose ith row contains the coefficients of the ith active

constraint and b is the vector containing the upper or the lower bound values that are satisfied by

the active constraints at P*.
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The necessary conditions for the minimum of the subproblem in (110) are (Gill et al., 1981)

o [ < AP* < u, with AP = b.

e Z'g(P*) = 0; or, equivalently, g(P*) = A"A*. Here, g(P*) = [0I/0P,, 0/0Ps, . ..,0I/0P,] is the
gradient vector of the objective function, A* is the vector of Lagrange multipliers and Z is the
nullspace of A.

e/*>0,i=1,2,...,twhere ¢ is the number of active constraints.

e Z"SZ is positive semi-definite.

A correct active set is not known beforehand and therefore, a working set to be treated as
equality constraints is selected from the original problem and iterated to obtain a correct prediction
of an active set. These iterations are carried out in the feasible direction throughout until an
optimal solution is obtained. Thus, to start with, we need to know the initial feasible point P,, so
that the subsequent search P, at any kth iteration are also feasible.

The solution proceeds in two phases by finding the feasible initial point P, in the first phase.
The estimation is based on the minimization of the sum of infeasibilities in P, which is the case of
linear programming that is solved by the modified version of the standard Simplex method. The
second phase then proceeds iteratively to solve the actual quadratic problem. The procedure after
any kth iteration step can be described as follows (Gill et al., 1981):

(1) The convergence criterion for the kth step is checked. The iteration terminates with P, as a
solution, when convergence is satisfied.

(2) The minimization procedure with current working space or by deleting a constraint in the
working space is decided. A general principle for the deletion of a constraint is that it is likely
to lower the value of the function. The iteration jumps to step (6) if any constraint has to be
deleted.

(3) The feasible search direction is computed by performing the following operations:

e Null space Z, of the matrix A is obtained through TQ factorization (Gill et al., 1981, 1984).

e New search direction p, = Z,p. is determined after solving a linear set of equations
Z SZp. = Z,{g,(.

e Lagrange multipliers 4, are estimated through min;, |AA— g3

(4) Maximum feasible steplength & along p, is computed and a positive steplength o, is determined
such that I(P,.+op,) < I(P,) and o, < &. The iteration jumps to (7) if o, < @.

(5) A constraint corresponding to o, is added to the working set and the associated quantities are
modified accordingly.

(6) A constraint corresponding to a negative Lagrange multiplier is deleted from the working and
the associated quantities are updated. Back to step (1).

(7) Variables are updated and the next iteration is continued.

The results presented in this paper have been obtained using the NAG Fortran library routine
(1993).

4.2. Numerical example

The composite cylinder considered here is the same as that described in Section 3. Optimal
solutions are obtained under an external pressure p, = 25 MPa. The equilibrium constraint con-
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Fig. 18. Optimal pre-stresses in layers, external pressure p, = 25 MPa; mandrel thickness 5 cm.
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Fig. 19. Local axial stress due to optical pre-stress and external pressure p, = 25 MPa; mandrel thickness 5 cm.

dition indicates that the stress influence matrices are singular with one rank deficiency, hence a
free pre-stress 4 = 1000 MPa is introduced in the fifth layer.

Figure 18 shows the local self-stress distribution for optimal pre-stress in a cylinder fabricated
with 5 cm mandrel. The self-stress distributions in 60 and 90° layers follow a combination of
constant and parabolic types, while the 0° layers admit negligible self-stresses. The corresponding
residual stresses in layers are shown in Figs 19-21 along with their strength limits. As required by
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Fig. 21. Shear stress due to optimal pre-stress and external pressure p, = 25 MPa; mandrel thickness 5 cm.

the constraint conditions, the axial, transverse and shear components of residual stresses in all the
layers are well within the strength limits. The optimal local pre-stress distribution in the thick
mandrel (1 m) cylinder is shown in Fig. 22.

Table 2 and 3 summarize the high and low magnitudes of the ply stresses, in local coordinates
of each ply, for the three mandrel thicknesses, under different loading conditions. Table 2 presents
the stresses due to application of the external pressure p, = 25 MPa and the constant and combined
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Fig. 22. Optimal pre-stresses in layers, external pressure p, = 25 MPa; mandrel thickness 1 m.

constant and parabolic pre-stress distributions of Fig. 5. Table 3 shows the magnitudes of the same
local stresses generated by a superposition of the optimal fiber pre-stress with the external pressure
of 25 MPa and also the magnitudes of the local residual stresses caused by the optimized pre-stress
acting alone, without the external pressure.

The results indicate that for a given pre-stress profile, a stiffer mandrel will create a more uniform
residual and total stresses through the wall thickness. For the optimized pre-stress, the mandrel
thickness has less significant influence on the residual stress state, but the required profile is more
uniform for a thick mandrel, Figs 18 and 22. Note that other than the 1000 MPa choice of initial
pre-stress would produce different residual and total stresses in the structure. The same is true for
different choices of ply strengths than those shown in Table 1.

5. Closure

As in our earlier paper (Dvorak and Prochazka, 1996), the principal conclusion reached from
the theory and illustrative examples is that fiber pre-stress may cause either beneficial or detrimental
residual stress distributions in laminated cylinder structures. Even rather moderate pre-stressing
forces may produce residual stress magnitudes that are comparable to those caused by external
tractions. In addition, significant thermal residual stresses may be caused in structural parts or
samples exposed to uniform temperature changes induced by cooling of the entire structure from
the curing temperature. Therefore, careful modeling and analysis of the fabrication process should
be an essential part of design procedures for laminated composite structures. The specific problems
solved herein illustrate some of the basic rules that should be followed. Use of rather stiff mandrels
and gradual reduction of the ply pre-stress forces through the wall thickness are among the most
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Table 2
Maximum and minimum stresses due to external pressure of 25 MPa and application of constant and combined constant
and parabolic pre-stress distributions of Fig. 5

Mandrel Mandrel Mandrel

thickness thickness thickness

t, =5cm t,=15cm th=1m

Local axial stress Constant pre-stress' Max —218.39* —419.41 —476.18°
io’; (MPa) Min —1073.40° —987.09 —1759.35°
Constant + parabolic pre-stress' Max —345.84% —264.73 —229.86°

Min  —888.52% —726.73 —808.69°

Local transverse stress Constant pre-stress' Max 71.35* —2.84 —63.20°
a5, (MPa) Min —311.35* —185.37 —156.50°
Constant + parabolic pre-stress Max  —47.14"° —34.10 24.10"
Min —166.28" —140.94 —129.32"

Local shear stress Constant pre-stress' Max 119.21¢ 78.83 42.757
a’, (MPa) Min —117.73° —77.86 —42.397
Constant + parabolic pre-stress' Max 38.97" 37.02 73.06"
Min —38.24" —36.54 —71.27"%

'Fig. 5. *Fig. 6. *Fig. 7. “Fig. 8. °Fig. 9. °Fig. 10. "Fig. 11. *Fig. 12. °Fig. 13. "“Fig. 14. 'Fig. 15. "’Fig. 16. *Fig. 17.

Table 3
Maximum and minimum stresses due to application of optimal fibre pre-stress

Mandrel Mandrel Mandrel

thickness thickness thickness

t,=5cm t, =15cm th=1m

Local axial stress With external pressure p, = 25 MPa Max —624.13' —583.64 —539.60
a, (MPa) Min —704.55' —704.98 —705.24
Without external pressure p, = 0 Max 71.87 112.36 156.40

Min —0.87 —1.19 —1.27

Local transverse stress ~ With external pressure p, = 25 MPa Max —40.63* —42.79 —44.82
a5, (MPa) Min —137.12? —131.30 —127.23
Without external pressure p, = 0 Max 23.54 21.38 19.35

Min —72.96 —67.13 —63.07

Local shear stress With external pressure p, = 25 MPa Max 13.77° 10.08 6.82
a1, (MPa) Min —14.14° —10.17 —6.87
Without external pressure p, = 0 Max 13.32 9.62 6.36

Min —13.65 —9.69 —6.38

'Fig. 19. 2Fig. 20. *Fig. 21.
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desirable design features. Of course, specific models and solutions are needed for each material
system, fabrication method and structural application.

Acknowledgement

This work was supported by the Ship Structures and Systems S&T Division of the Office of
Naval Research; Dr Yapa D. S. Rajapakse served as program monitor.

References

Daniel, I.M., Isahi, O., 1994. Engineering Mechanics of Composite Materials. Oxford University Press, New York.

Dvorak, G.J. Prochazka, P., 1996. Thick-walled composite cylinders with optimal fiber pre-stress. Composites, Part B
27B, 643-649.

Dvorak G.J., Srinivas, M.V., Prochazka, P., 1999. Design and fabrication of submerged cylindrical laminates—I. Int.
J. Solids Structures 36, 3917-3943.

Gill, P.E., Murray, W., Wright, M.H., 1981. Practical Optimization. Academic Press, New York.

Gill, P.E., Murray, W., Saunders, M.A., Wrights, M.H., 1984. Procedures for optimization problems with a mixture of
bounds and general linear constraints. ACM Transactions on Mathematical Software 10, 282-298.

NAG Fortran Library Manual, 1993. NAG Ltd, Oxford.



